function BaseCurve(type, conf) { this.type = type; this.p = new BN(conf.p, 16); // Use Montgomery, when there is no fast reduction for the prime this.red = conf.prime ? BN.red(conf.prime) : BN.mont(this.p); // Useful for many curves this.zero = new BN(0).toRed(this.red); this.one = new BN(1).toRed(this.red); this.two = new BN(2).toRed(this.red); // Curve configuration, optional this.n = conf.n && new BN(conf.n, 16); this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed); // Temporary arrays this._wnafT1 = new Array(4); this._wnafT2 = new Array(4); this._wnafT3 = new Array(4); this._wnafT4 = new Array(4); // Generalized Greg Maxwell's trick var adjustCount = this.n && this.p.div(this.n); if (!adjustCount || adjustCount.cmpn(100) > 0) { this.redN = null; } else { this._maxwellTrick = true; this.redN = this.n.toRed(this.red); } }
n/a
function EdwardsCurve(conf) { // NOTE: Important as we are creating point in Base.call() this.twisted = (conf.a | 0) !== 1; this.mOneA = this.twisted && (conf.a | 0) === -1; this.extended = this.mOneA; Base.call(this, 'edwards', conf); this.a = new BN(conf.a, 16).umod(this.red.m); this.a = this.a.toRed(this.red); this.c = new BN(conf.c, 16).toRed(this.red); this.c2 = this.c.redSqr(); this.d = new BN(conf.d, 16).toRed(this.red); this.dd = this.d.redAdd(this.d); assert(!this.twisted || this.c.fromRed().cmpn(1) === 0); this.oneC = (conf.c | 0) === 1; }
...
var assert = elliptic.utils.assert;
function PresetCurve(options) {
if (options.type === 'short')
this.curve = new elliptic.curve.short(options);
else if (options.type === 'edwards')
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
...
function MontCurve(conf) { Base.call(this, 'mont', conf); this.a = new BN(conf.a, 16).toRed(this.red); this.b = new BN(conf.b, 16).toRed(this.red); this.i4 = new BN(4).toRed(this.red).redInvm(); this.two = new BN(2).toRed(this.red); this.a24 = this.i4.redMul(this.a.redAdd(this.two)); }
...
function PresetCurve(options) {
if (options.type === 'short')
this.curve = new elliptic.curve.short(options);
else if (options.type === 'edwards')
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O');
}
...
function ShortCurve(conf) { Base.call(this, 'short', conf); this.a = new BN(conf.a, 16).toRed(this.red); this.b = new BN(conf.b, 16).toRed(this.red); this.tinv = this.two.redInvm(); this.zeroA = this.a.fromRed().cmpn(0) === 0; this.threeA = this.a.fromRed().sub(this.p).cmpn(-3) === 0; // If the curve is endomorphic, precalculate beta and lambda this.endo = this._getEndomorphism(conf); this._endoWnafT1 = new Array(4); this._endoWnafT2 = new Array(4); }
...
var hash = require('hash.js');
var elliptic = require('../elliptic');
var assert = elliptic.utils.assert;
function PresetCurve(options) {
if (options.type === 'short')
this.curve = new elliptic.curve.short(options);
else if (options.type === 'edwards')
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
...
function EC(options) { if (!(this instanceof EC)) return new EC(options); // Shortcut `elliptic.ec(curve-name)` if (typeof options === 'string') { assert(elliptic.curves.hasOwnProperty(options), 'Unknown curve ' + options); options = elliptic.curves[options]; } // Shortcut for `elliptic.ec(elliptic.curves.curveName)` if (options instanceof elliptic.curves.PresetCurve) options = { curve: options }; this.curve = options.curve.curve; this.n = this.curve.n; this.nh = this.n.ushrn(1); this.g = this.curve.g; // Point on curve this.g = options.curve.g; this.g.precompute(options.curve.n.bitLength() + 1); // Hash for function for DRBG this.hash = options.hash || options.curve.hash; }
...
var KeyPair = require('./key');
var Signature = require('./signature');
function EC(options) {
if (!(this instanceof EC))
return new EC(options);
// Shortcut `elliptic.ec(curve-name)`
if (typeof options === 'string') {
assert(elliptic.curves.hasOwnProperty(options), 'Unknown curve ' + options);
options = elliptic.curves[options];
}
// Shortcut for `elliptic.ec(elliptic.curves.curveName)`
...
function EDDSA(curve) { assert(curve === 'ed25519', 'only tested with ed25519 so far'); if (!(this instanceof EDDSA)) return new EDDSA(curve); var curve = elliptic.curves[curve].curve; this.curve = curve; this.g = curve.g; this.g.precompute(curve.n.bitLength() + 1); this.pointClass = curve.point().constructor; this.encodingLength = Math.ceil(curve.n.bitLength() / 8); this.hash = hash.sha512; }
n/a
function KeyPair(ec, options) { this.ec = ec; this.priv = null; this.pub = null; // KeyPair(ec, { priv: ..., pub: ... }) if (options.priv) this._importPrivate(options.priv, options.privEnc); if (options.pub) this._importPublic(options.pub, options.pubEnc); }
n/a
function rand(len) { if (!r) r = new Rand(null); return r.generate(len); }
...
options = {};
// Instantiate Hmac_DRBG
var drbg = new HmacDRBG({
hash: this.hash,
pers: options.pers,
persEnc: options.persEnc || 'utf8',
entropy: options.entropy || elliptic.rand(this.hash.hmacStrength),
entropyEnc: options.entropy && options.entropyEnc || 'utf8',
nonce: this.n.toArray()
});
var bytes = this.n.byteLength();
var ns2 = this.n.sub(new BN(2));
do {
...
function Rand(rand) { this.rand = rand; }
n/a
function Signature(options, enc) { if (options instanceof Signature) return options; if (this._importDER(options, enc)) return; assert(options.r && options.s, 'Signature without r or s'); this.r = new BN(options.r, 16); this.s = new BN(options.s, 16); if (options.recoveryParam === undefined) this.recoveryParam = null; else this.recoveryParam = options.recoveryParam; }
n/a
function assert(val, msg) { if (!val) throw new Error(msg || 'Assertion failed'); }
n/a
function BaseCurve(type, conf) { this.type = type; this.p = new BN(conf.p, 16); // Use Montgomery, when there is no fast reduction for the prime this.red = conf.prime ? BN.red(conf.prime) : BN.mont(this.p); // Useful for many curves this.zero = new BN(0).toRed(this.red); this.one = new BN(1).toRed(this.red); this.two = new BN(2).toRed(this.red); // Curve configuration, optional this.n = conf.n && new BN(conf.n, 16); this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed); // Temporary arrays this._wnafT1 = new Array(4); this._wnafT2 = new Array(4); this._wnafT3 = new Array(4); this._wnafT4 = new Array(4); // Generalized Greg Maxwell's trick var adjustCount = this.n && this.p.div(this.n); if (!adjustCount || adjustCount.cmpn(100) > 0) { this.redN = null; } else { this._maxwellTrick = true; this.redN = this.n.toRed(this.red); } }
n/a
function EdwardsCurve(conf) { // NOTE: Important as we are creating point in Base.call() this.twisted = (conf.a | 0) !== 1; this.mOneA = this.twisted && (conf.a | 0) === -1; this.extended = this.mOneA; Base.call(this, 'edwards', conf); this.a = new BN(conf.a, 16).umod(this.red.m); this.a = this.a.toRed(this.red); this.c = new BN(conf.c, 16).toRed(this.red); this.c2 = this.c.redSqr(); this.d = new BN(conf.d, 16).toRed(this.red); this.dd = this.d.redAdd(this.d); assert(!this.twisted || this.c.fromRed().cmpn(1) === 0); this.oneC = (conf.c | 0) === 1; }
...
var assert = elliptic.utils.assert;
function PresetCurve(options) {
if (options.type === 'short')
this.curve = new elliptic.curve.short(options);
else if (options.type === 'edwards')
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
...
function MontCurve(conf) { Base.call(this, 'mont', conf); this.a = new BN(conf.a, 16).toRed(this.red); this.b = new BN(conf.b, 16).toRed(this.red); this.i4 = new BN(4).toRed(this.red).redInvm(); this.two = new BN(2).toRed(this.red); this.a24 = this.i4.redMul(this.a.redAdd(this.two)); }
...
function PresetCurve(options) {
if (options.type === 'short')
this.curve = new elliptic.curve.short(options);
else if (options.type === 'edwards')
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O');
}
...
function ShortCurve(conf) { Base.call(this, 'short', conf); this.a = new BN(conf.a, 16).toRed(this.red); this.b = new BN(conf.b, 16).toRed(this.red); this.tinv = this.two.redInvm(); this.zeroA = this.a.fromRed().cmpn(0) === 0; this.threeA = this.a.fromRed().sub(this.p).cmpn(-3) === 0; // If the curve is endomorphic, precalculate beta and lambda this.endo = this._getEndomorphism(conf); this._endoWnafT1 = new Array(4); this._endoWnafT2 = new Array(4); }
...
var hash = require('hash.js');
var elliptic = require('../elliptic');
var assert = elliptic.utils.assert;
function PresetCurve(options) {
if (options.type === 'short')
this.curve = new elliptic.curve.short(options);
else if (options.type === 'edwards')
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
...
function BaseCurve(type, conf) { this.type = type; this.p = new BN(conf.p, 16); // Use Montgomery, when there is no fast reduction for the prime this.red = conf.prime ? BN.red(conf.prime) : BN.mont(this.p); // Useful for many curves this.zero = new BN(0).toRed(this.red); this.one = new BN(1).toRed(this.red); this.two = new BN(2).toRed(this.red); // Curve configuration, optional this.n = conf.n && new BN(conf.n, 16); this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed); // Temporary arrays this._wnafT1 = new Array(4); this._wnafT2 = new Array(4); this._wnafT3 = new Array(4); this._wnafT4 = new Array(4); // Generalized Greg Maxwell's trick var adjustCount = this.n && this.p.div(this.n); if (!adjustCount || adjustCount.cmpn(100) > 0) { this.redN = null; } else { this._maxwellTrick = true; this.redN = this.n.toRed(this.red); } }
n/a
function BasePoint(curve, type) { this.curve = curve; this.type = type; this.precomputed = null; }
n/a
function _encode(compact) { var len = this.curve.p.byteLength(); var x = this.getX().toArray('be', len); if (compact) return [ this.getY().isEven() ? 0x02 : 0x03 ].concat(x); return [ 0x04 ].concat(x, this.getY().toArray('be', len)) ; }
...
if (compact)
return [ this.getY().isEven() ? 0x02 : 0x03 ].concat(x);
return [ 0x04 ].concat(x, this.getY().toArray('be', len)) ;
};
BasePoint.prototype.encode = function encode(enc, compact) {
return utils.encode(this._encode(compact), enc);
};
BasePoint.prototype.precompute = function precompute(power) {
if (this.precomputed)
return this;
var precomputed = {
...
function _getBeta() { return null; }
...
var precomputed = {
doubles: null,
naf: null,
beta: null
};
precomputed.naf = this._getNAFPoints(8);
precomputed.doubles = this._getDoubles(4, power);
precomputed.beta = this._getBeta();
this.precomputed = precomputed;
return this;
};
BasePoint.prototype._hasDoubles = function _hasDoubles(k) {
if (!this.precomputed)
...
function _getDoubles(step, power) { if (this.precomputed && this.precomputed.doubles) return this.precomputed.doubles; var doubles = [ this ]; var acc = this; for (var i = 0; i < power; i += step) { for (var j = 0; j < step; j++) acc = acc.dbl(); doubles.push(acc); } return { step: step, points: doubles }; }
...
BaseCurve.prototype.validate = function validate() {
throw new Error('Not implemented');
};
BaseCurve.prototype._fixedNafMul = function _fixedNafMul(p, k) {
assert(p.precomputed);
var doubles = p._getDoubles();
var naf = getNAF(k, 1);
var I = (1 << (doubles.step + 1)) - (doubles.step % 2 === 0 ? 2 : 1);
I /= 3;
// Translate into more windowed form
var repr = [];
...
function _getNAFPoints(wnd) { if (this.precomputed && this.precomputed.naf) return this.precomputed.naf; var res = [ this ]; var max = (1 << wnd) - 1; var dbl = max === 1 ? null : this.dbl(); for (var i = 1; i < max; i++) res[i] = res[i - 1].add(dbl); return { wnd: wnd, points: res }; }
...
return a.toP();
};
BaseCurve.prototype._wnafMul = function _wnafMul(p, k) {
var w = 4;
// Precompute window
var nafPoints = p._getNAFPoints(w);
w = nafPoints.wnd;
var wnd = nafPoints.points;
// Get NAF form
var naf = getNAF(k, w);
// Add `this`*(N+1) for every w-NAF index
...
function _hasDoubles(k) { if (!this.precomputed) return false; var doubles = this.precomputed.doubles; if (!doubles) return false; return doubles.points.length >= Math.ceil((k.bitLength() + 1) / doubles.step); }
...
if (this.curve.extended)
return this._extAdd(p);
else
return this._projAdd(p);
};
Point.prototype.mul = function mul(k) {
if (this._hasDoubles(k))
return this.curve._fixedNafMul(this, k);
else
return this.curve._wnafMul(this, k);
};
Point.prototype.mulAdd = function mulAdd(k1, p, k2) {
return this.curve._wnafMulAdd(1, [ this, p ], [ k1, k2 ], 2, false);
...
function dblp(k) { var r = this; for (var i = 0; i < k; i++) r = r.dbl(); return r; }
...
var acc = this.jpoint(null, null, null);
for (var i = naf.length - 1; i >= 0; i--) {
// Count zeroes
for (var k = 0; i >= 0 && naf[i] === 0; i--)
k++;
if (i >= 0)
k++;
acc = acc.dblp(k);
if (i < 0)
break;
var z = naf[i];
assert(z !== 0);
if (p.type === 'affine') {
// J +- P
...
function encode(enc, compact) { return utils.encode(this._encode(compact), enc); }
...
bytes.length - 1 === len) {
return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
}
throw new Error('Unknown point format');
};
BasePoint.prototype.encodeCompressed = function encodeCompressed(enc) {
return this.encode(enc, true);
};
BasePoint.prototype._encode = function _encode(compact) {
var len = this.curve.p.byteLength();
var x = this.getX().toArray('be', len);
if (compact)
...
function encodeCompressed(enc) { return this.encode(enc, true); }
n/a
function eq() { throw new Error('Not implemented'); }
...
return p;
// P + O = P
if (p.inf)
return this;
// P + P = 2P
if (this.eq(p))
return this.dbl();
// P + (-P) = O
if (this.neg().eq(p))
return this.curve.point(null, null);
// P + Q = O
...
function precompute(power) { if (this.precomputed) return this; var precomputed = { doubles: null, naf: null, beta: null }; precomputed.naf = this._getNAFPoints(8); precomputed.doubles = this._getDoubles(4, power); precomputed.beta = this._getBeta(); this.precomputed = precomputed; return this; }
...
this.curve = options.curve.curve;
this.n = this.curve.n;
this.nh = this.n.ushrn(1);
this.g = this.curve.g;
// Point on curve
this.g = options.curve.g;
this.g.precompute(options.curve.n.bitLength() + 1);
// Hash for function for DRBG
this.hash = options.hash || options.curve.hash;
}
module.exports = EC;
EC.prototype.keyPair = function keyPair(options) {
...
function validate() { return this.curve.validate(this); }
...
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O');
}
curves.PresetCurve = PresetCurve;
function defineCurve(name, options) {
Object.defineProperty(curves, name, {
configurable: true,
...
function _fixedNafMul(p, k) { assert(p.precomputed); var doubles = p._getDoubles(); var naf = getNAF(k, 1); var I = (1 << (doubles.step + 1)) - (doubles.step % 2 === 0 ? 2 : 1); I /= 3; // Translate into more windowed form var repr = []; for (var j = 0; j < naf.length; j += doubles.step) { var nafW = 0; for (var k = j + doubles.step - 1; k >= j; k--) nafW = (nafW << 1) + naf[k]; repr.push(nafW); } var a = this.jpoint(null, null, null); var b = this.jpoint(null, null, null); for (var i = I; i > 0; i--) { for (var j = 0; j < repr.length; j++) { var nafW = repr[j]; if (nafW === i) b = b.mixedAdd(doubles.points[j]); else if (nafW === -i) b = b.mixedAdd(doubles.points[j].neg()); } a = a.add(b); } return a.toP(); }
...
return this._extAdd(p);
else
return this._projAdd(p);
};
Point.prototype.mul = function mul(k) {
if (this._hasDoubles(k))
return this.curve._fixedNafMul(this, k);
else
return this.curve._wnafMul(this, k);
};
Point.prototype.mulAdd = function mulAdd(k1, p, k2) {
return this.curve._wnafMulAdd(1, [ this, p ], [ k1, k2 ], 2, false);
};
...
function _wnafMul(p, k) { var w = 4; // Precompute window var nafPoints = p._getNAFPoints(w); w = nafPoints.wnd; var wnd = nafPoints.points; // Get NAF form var naf = getNAF(k, w); // Add `this`*(N+1) for every w-NAF index var acc = this.jpoint(null, null, null); for (var i = naf.length - 1; i >= 0; i--) { // Count zeroes for (var k = 0; i >= 0 && naf[i] === 0; i--) k++; if (i >= 0) k++; acc = acc.dblp(k); if (i < 0) break; var z = naf[i]; assert(z !== 0); if (p.type === 'affine') { // J +- P if (z > 0) acc = acc.mixedAdd(wnd[(z - 1) >> 1]); else acc = acc.mixedAdd(wnd[(-z - 1) >> 1].neg()); } else { // J +- J if (z > 0) acc = acc.add(wnd[(z - 1) >> 1]); else acc = acc.add(wnd[(-z - 1) >> 1].neg()); } } return p.type === 'affine' ? acc.toP() : acc; }
...
return this._projAdd(p);
};
Point.prototype.mul = function mul(k) {
if (this._hasDoubles(k))
return this.curve._fixedNafMul(this, k);
else
return this.curve._wnafMul(this, k);
};
Point.prototype.mulAdd = function mulAdd(k1, p, k2) {
return this.curve._wnafMulAdd(1, [ this, p ], [ k1, k2 ], 2, false);
};
Point.prototype.jmulAdd = function jmulAdd(k1, p, k2) {
...
function _wnafMulAdd(defW, points, coeffs, len, jacobianResult) {
var wndWidth = this._wnafT1;
var wnd = this._wnafT2;
var naf = this._wnafT3;
// Fill all arrays
var max = 0;
for (var i = 0; i < len; i++) {
var p = points[i];
var nafPoints = p._getNAFPoints(defW);
wndWidth[i] = nafPoints.wnd;
wnd[i] = nafPoints.points;
}
// Comb small window NAFs
for (var i = len - 1; i >= 1; i -= 2) {
var a = i - 1;
var b = i;
if (wndWidth[a] !== 1 || wndWidth[b] !== 1) {
naf[a] = getNAF(coeffs[a], wndWidth[a]);
naf[b] = getNAF(coeffs[b], wndWidth[b]);
max = Math.max(naf[a].length, max);
max = Math.max(naf[b].length, max);
continue;
}
var comb = [
points[a], /* 1 */
null, /* 3 */
null, /* 5 */
points[b] /* 7 */
];
// Try to avoid Projective points, if possible
if (points[a].y.cmp(points[b].y) === 0) {
comb[1] = points[a].add(points[b]);
comb[2] = points[a].toJ().mixedAdd(points[b].neg());
} else if (points[a].y.cmp(points[b].y.redNeg()) === 0) {
comb[1] = points[a].toJ().mixedAdd(points[b]);
comb[2] = points[a].add(points[b].neg());
} else {
comb[1] = points[a].toJ().mixedAdd(points[b]);
comb[2] = points[a].toJ().mixedAdd(points[b].neg());
}
var index = [
-3, /* -1 -1 */
-1, /* -1 0 */
-5, /* -1 1 */
-7, /* 0 -1 */
0, /* 0 0 */
7, /* 0 1 */
5, /* 1 -1 */
1, /* 1 0 */
3 /* 1 1 */
];
var jsf = getJSF(coeffs[a], coeffs[b]);
max = Math.max(jsf[0].length, max);
naf[a] = new Array(max);
naf[b] = new Array(max);
for (var j = 0; j < max; j++) {
var ja = jsf[0][j] | 0;
var jb = jsf[1][j] | 0;
naf[a][j] = index[(ja + 1) * 3 + (jb + 1)];
naf[b][j] = 0;
wnd[a] = comb;
}
}
var acc = this.jpoint(null, null, null);
var tmp = this._wnafT4;
for (var i = max; i >= 0; i--) {
var k = 0;
while (i >= 0) {
var zero = true;
for (var j = 0; j < len; j++) {
tmp[j] = naf[j][i] | 0;
if (tmp[j] !== 0)
zero = false;
}
if (!zero)
break;
k++;
i--;
}
if (i >= 0)
k++;
acc = acc.dblp(k);
if (i < 0)
break;
for (var j = 0; j < len; j++) {
var z = tmp[j];
var p;
if (z === 0)
continue;
else if (z > 0)
p = wnd[j][(z - 1) >> 1];
else if (z < 0)
p = wnd[j][(-z - 1) >> 1].neg();
if (p.type === 'affine')
acc = acc.mixedAdd(p);
else
acc = acc.add(p);
}
}
// Zeroify references
for (var i = 0; i < len; i++)
wnd[i] = null;
if (jacobianResult)
return acc;
else
return acc.toP();
}
...
if (this._hasDoubles(k))
return this.curve._fixedNafMul(this, k);
else
return this.curve._wnafMul(this, k);
};
Point.prototype.mulAdd = function mulAdd(k1, p, k2) {
return this.curve._wnafMulAdd(1, [ this, p ], [ k1, k2 ], 2, false);
};
Point.prototype.jmulAdd = function jmulAdd(k1, p, k2) {
return this.curve._wnafMulAdd(1, [ this, p ], [ k1, k2 ], 2, true);
};
Point.prototype.normalize = function normalize() {
...
function decodePoint(bytes, enc) { bytes = utils.toArray(bytes, enc); var len = this.p.byteLength(); // uncompressed, hybrid-odd, hybrid-even if ((bytes[0] === 0x04 || bytes[0] === 0x06 || bytes[0] === 0x07) && bytes.length - 1 === 2 * len) { if (bytes[0] === 0x06) assert(bytes[bytes.length - 1] % 2 === 0); else if (bytes[0] === 0x07) assert(bytes[bytes.length - 1] % 2 === 1); var res = this.point(bytes.slice(1, 1 + len), bytes.slice(1 + len, 1 + 2 * len)); return res; } else if ((bytes[0] === 0x02 || bytes[0] === 0x03) && bytes.length - 1 === len) { return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03); } throw new Error('Unknown point format'); }
...
} else if (this.ec.curve.type === 'short' ||
this.ec.curve.type === 'edwards') {
assert(key.x && key.y, 'Need both x and y coordinate');
}
this.pub = this.ec.curve.point(key.x, key.y);
return;
}
this.pub = this.ec.curve.decodePoint(key, enc);
};
// ECDH
KeyPair.prototype.derive = function derive(pub) {
return pub.mul(this.priv).getX();
};
...
function point() { throw new Error('Not implemented'); }
...
if ((bytes[0] === 0x04 || bytes[0] === 0x06 || bytes[0] === 0x07) &&
bytes.length - 1 === 2 * len) {
if (bytes[0] === 0x06)
assert(bytes[bytes.length - 1] % 2 === 0);
else if (bytes[0] === 0x07)
assert(bytes[bytes.length - 1] % 2 === 1);
var res = this.point(bytes.slice(1, 1 + len),
bytes.slice(1 + len, 1 + 2 * len));
return res;
} else if ((bytes[0] === 0x02 || bytes[0] === 0x03) &&
bytes.length - 1 === len) {
return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
}
...
function validate() { throw new Error('Not implemented'); }
...
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O');
}
curves.PresetCurve = PresetCurve;
function defineCurve(name, options) {
Object.defineProperty(curves, name, {
configurable: true,
...
function EdwardsCurve(conf) { // NOTE: Important as we are creating point in Base.call() this.twisted = (conf.a | 0) !== 1; this.mOneA = this.twisted && (conf.a | 0) === -1; this.extended = this.mOneA; Base.call(this, 'edwards', conf); this.a = new BN(conf.a, 16).umod(this.red.m); this.a = this.a.toRed(this.red); this.c = new BN(conf.c, 16).toRed(this.red); this.c2 = this.c.redSqr(); this.d = new BN(conf.d, 16).toRed(this.red); this.dd = this.d.redAdd(this.d); assert(!this.twisted || this.c.fromRed().cmpn(1) === 0); this.oneC = (conf.c | 0) === 1; }
...
var assert = elliptic.utils.assert;
function PresetCurve(options) {
if (options.type === 'short')
this.curve = new elliptic.curve.short(options);
else if (options.type === 'edwards')
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
...
function BaseCurve(type, conf) { this.type = type; this.p = new BN(conf.p, 16); // Use Montgomery, when there is no fast reduction for the prime this.red = conf.prime ? BN.red(conf.prime) : BN.mont(this.p); // Useful for many curves this.zero = new BN(0).toRed(this.red); this.one = new BN(1).toRed(this.red); this.two = new BN(2).toRed(this.red); // Curve configuration, optional this.n = conf.n && new BN(conf.n, 16); this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed); // Temporary arrays this._wnafT1 = new Array(4); this._wnafT2 = new Array(4); this._wnafT3 = new Array(4); this._wnafT4 = new Array(4); // Generalized Greg Maxwell's trick var adjustCount = this.n && this.p.div(this.n); if (!adjustCount || adjustCount.cmpn(100) > 0) { this.redN = null; } else { this._maxwellTrick = true; this.redN = this.n.toRed(this.red); } }
n/a
function _mulA(num) { if (this.mOneA) return num.redNeg(); else return this.a.redMul(num); }
...
var a = this.x.redSqr();
// B = Y1^2
var b = this.y.redSqr();
// C = 2 * Z1^2
var c = this.z.redSqr();
c = c.redIAdd(c);
// D = a * A
var d = this.curve._mulA(a);
// E = (X1 + Y1)^2 - A - B
var e = this.x.redAdd(this.y).redSqr().redISub(a).redISub(b);
// G = D + B
var g = d.redAdd(b);
// F = G - C
var f = g.redSub(c);
// H = D - B
...
function _mulC(num) { if (this.oneC) return num; else return this.c.redMul(num); }
...
// Z3 = F * J
nz = f.redMul(j);
}
} else {
// E = C + D
var e = c.redAdd(d);
// H = (c * Z1)^2
var h = this.curve._mulC(this.c.redMul(this.z)).redSqr();
// J = E - 2 * H
var j = e.redSub(h).redSub(h);
// X3 = c * (B - E) * J
nx = this.curve._mulC(b.redISub(e)).redMul(j);
// Y3 = c * E * (C - D)
ny = this.curve._mulC(e).redMul(c.redISub(d));
// Z3 = E * J
...
function jpoint(x, y, z, t) { return this.point(x, y, z, t); }
...
for (var j = 0; j < naf.length; j += doubles.step) {
var nafW = 0;
for (var k = j + doubles.step - 1; k >= j; k--)
nafW = (nafW << 1) + naf[k];
repr.push(nafW);
}
var a = this.jpoint(null, null, null);
var b = this.jpoint(null, null, null);
for (var i = I; i > 0; i--) {
for (var j = 0; j < repr.length; j++) {
var nafW = repr[j];
if (nafW === i)
b = b.mixedAdd(doubles.points[j]);
else if (nafW === -i)
...
function point(x, y, z, t) { return new Point(this, x, y, z, t); }
...
if ((bytes[0] === 0x04 || bytes[0] === 0x06 || bytes[0] === 0x07) &&
bytes.length - 1 === 2 * len) {
if (bytes[0] === 0x06)
assert(bytes[bytes.length - 1] % 2 === 0);
else if (bytes[0] === 0x07)
assert(bytes[bytes.length - 1] % 2 === 1);
var res = this.point(bytes.slice(1, 1 + len),
bytes.slice(1 + len, 1 + 2 * len));
return res;
} else if ((bytes[0] === 0x02 || bytes[0] === 0x03) &&
bytes.length - 1 === len) {
return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
}
...
function pointFromJSON(obj) { return Point.fromJSON(this, obj); }
...
// Useful for many curves
this.zero = new BN(0).toRed(this.red);
this.one = new BN(1).toRed(this.red);
this.two = new BN(2).toRed(this.red);
// Curve configuration, optional
this.n = conf.n && new BN(conf.n, 16);
this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed);
// Temporary arrays
this._wnafT1 = new Array(4);
this._wnafT2 = new Array(4);
this._wnafT3 = new Array(4);
this._wnafT4 = new Array(4);
...
function pointFromX(x, odd) { x = new BN(x, 16); if (!x.red) x = x.toRed(this.red); var x2 = x.redSqr(); var rhs = this.c2.redSub(this.a.redMul(x2)); var lhs = this.one.redSub(this.c2.redMul(this.d).redMul(x2)); var y2 = rhs.redMul(lhs.redInvm()); var y = y2.redSqrt(); if (y.redSqr().redSub(y2).cmp(this.zero) !== 0) throw new Error('invalid point'); var isOdd = y.fromRed().isOdd(); if (odd && !isOdd || !odd && isOdd) y = y.redNeg(); return this.point(x, y); }
...
var res = this.point(bytes.slice(1, 1 + len),
bytes.slice(1 + len, 1 + 2 * len));
return res;
} else if ((bytes[0] === 0x02 || bytes[0] === 0x03) &&
bytes.length - 1 === len) {
return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
}
throw new Error('Unknown point format');
};
BasePoint.prototype.encodeCompressed = function encodeCompressed(enc) {
return this.encode(enc, true);
};
...
function pointFromY(y, odd) { y = new BN(y, 16); if (!y.red) y = y.toRed(this.red); // x^2 = (y^2 - 1) / (d y^2 + 1) var y2 = y.redSqr(); var lhs = y2.redSub(this.one); var rhs = y2.redMul(this.d).redAdd(this.one); var x2 = lhs.redMul(rhs.redInvm()); if (x2.cmp(this.zero) === 0) { if (odd) throw new Error('invalid point'); else return this.point(this.zero, y); } var x = x2.redSqrt(); if (x.redSqr().redSub(x2).cmp(this.zero) !== 0) throw new Error('invalid point'); if (x.isOdd() !== odd) x = x.redNeg(); return this.point(x, y); }
...
bytes = utils.parseBytes(bytes);
var lastIx = bytes.length - 1;
var normed = bytes.slice(0, lastIx).concat(bytes[lastIx] & ~0x80);
var xIsOdd = (bytes[lastIx] & 0x80) !== 0;
var y = utils.intFromLE(normed);
return this.curve.pointFromY(y, xIsOdd);
};
EDDSA.prototype.encodeInt = function encodeInt(num) {
return num.toArray('le', this.encodingLength);
};
EDDSA.prototype.decodeInt = function decodeInt(bytes) {
...
function validate(point) { if (point.isInfinity()) return true; // Curve: A * X^2 + Y^2 = C^2 * (1 + D * X^2 * Y^2) point.normalize(); var x2 = point.x.redSqr(); var y2 = point.y.redSqr(); var lhs = x2.redMul(this.a).redAdd(y2); var rhs = this.c2.redMul(this.one.redAdd(this.d.redMul(x2).redMul(y2))); return lhs.cmp(rhs) === 0; }
...
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O');
}
curves.PresetCurve = PresetCurve;
function defineCurve(name, options) {
Object.defineProperty(curves, name, {
configurable: true,
...
function MontCurve(conf) { Base.call(this, 'mont', conf); this.a = new BN(conf.a, 16).toRed(this.red); this.b = new BN(conf.b, 16).toRed(this.red); this.i4 = new BN(4).toRed(this.red).redInvm(); this.two = new BN(2).toRed(this.red); this.a24 = this.i4.redMul(this.a.redAdd(this.two)); }
...
function PresetCurve(options) {
if (options.type === 'short')
this.curve = new elliptic.curve.short(options);
else if (options.type === 'edwards')
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O');
}
...
function BaseCurve(type, conf) { this.type = type; this.p = new BN(conf.p, 16); // Use Montgomery, when there is no fast reduction for the prime this.red = conf.prime ? BN.red(conf.prime) : BN.mont(this.p); // Useful for many curves this.zero = new BN(0).toRed(this.red); this.one = new BN(1).toRed(this.red); this.two = new BN(2).toRed(this.red); // Curve configuration, optional this.n = conf.n && new BN(conf.n, 16); this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed); // Temporary arrays this._wnafT1 = new Array(4); this._wnafT2 = new Array(4); this._wnafT3 = new Array(4); this._wnafT4 = new Array(4); // Generalized Greg Maxwell's trick var adjustCount = this.n && this.p.div(this.n); if (!adjustCount || adjustCount.cmpn(100) > 0) { this.redN = null; } else { this._maxwellTrick = true; this.redN = this.n.toRed(this.red); } }
n/a
function decodePoint(bytes, enc) { return this.point(utils.toArray(bytes, enc), 1); }
...
} else if (this.ec.curve.type === 'short' ||
this.ec.curve.type === 'edwards') {
assert(key.x && key.y, 'Need both x and y coordinate');
}
this.pub = this.ec.curve.point(key.x, key.y);
return;
}
this.pub = this.ec.curve.decodePoint(key, enc);
};
// ECDH
KeyPair.prototype.derive = function derive(pub) {
return pub.mul(this.priv).getX();
};
...
function point(x, z) { return new Point(this, x, z); }
...
if ((bytes[0] === 0x04 || bytes[0] === 0x06 || bytes[0] === 0x07) &&
bytes.length - 1 === 2 * len) {
if (bytes[0] === 0x06)
assert(bytes[bytes.length - 1] % 2 === 0);
else if (bytes[0] === 0x07)
assert(bytes[bytes.length - 1] % 2 === 1);
var res = this.point(bytes.slice(1, 1 + len),
bytes.slice(1 + len, 1 + 2 * len));
return res;
} else if ((bytes[0] === 0x02 || bytes[0] === 0x03) &&
bytes.length - 1 === len) {
return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
}
...
function pointFromJSON(obj) { return Point.fromJSON(this, obj); }
...
// Useful for many curves
this.zero = new BN(0).toRed(this.red);
this.one = new BN(1).toRed(this.red);
this.two = new BN(2).toRed(this.red);
// Curve configuration, optional
this.n = conf.n && new BN(conf.n, 16);
this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed);
// Temporary arrays
this._wnafT1 = new Array(4);
this._wnafT2 = new Array(4);
this._wnafT3 = new Array(4);
this._wnafT4 = new Array(4);
...
function validate(point) { var x = point.normalize().x; var x2 = x.redSqr(); var rhs = x2.redMul(x).redAdd(x2.redMul(this.a)).redAdd(x); var y = rhs.redSqrt(); return y.redSqr().cmp(rhs) === 0; }
...
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O');
}
curves.PresetCurve = PresetCurve;
function defineCurve(name, options) {
Object.defineProperty(curves, name, {
configurable: true,
...
function ShortCurve(conf) { Base.call(this, 'short', conf); this.a = new BN(conf.a, 16).toRed(this.red); this.b = new BN(conf.b, 16).toRed(this.red); this.tinv = this.two.redInvm(); this.zeroA = this.a.fromRed().cmpn(0) === 0; this.threeA = this.a.fromRed().sub(this.p).cmpn(-3) === 0; // If the curve is endomorphic, precalculate beta and lambda this.endo = this._getEndomorphism(conf); this._endoWnafT1 = new Array(4); this._endoWnafT2 = new Array(4); }
...
var hash = require('hash.js');
var elliptic = require('../elliptic');
var assert = elliptic.utils.assert;
function PresetCurve(options) {
if (options.type === 'short')
this.curve = new elliptic.curve.short(options);
else if (options.type === 'edwards')
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
...
function BaseCurve(type, conf) { this.type = type; this.p = new BN(conf.p, 16); // Use Montgomery, when there is no fast reduction for the prime this.red = conf.prime ? BN.red(conf.prime) : BN.mont(this.p); // Useful for many curves this.zero = new BN(0).toRed(this.red); this.one = new BN(1).toRed(this.red); this.two = new BN(2).toRed(this.red); // Curve configuration, optional this.n = conf.n && new BN(conf.n, 16); this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed); // Temporary arrays this._wnafT1 = new Array(4); this._wnafT2 = new Array(4); this._wnafT3 = new Array(4); this._wnafT4 = new Array(4); // Generalized Greg Maxwell's trick var adjustCount = this.n && this.p.div(this.n); if (!adjustCount || adjustCount.cmpn(100) > 0) { this.redN = null; } else { this._maxwellTrick = true; this.redN = this.n.toRed(this.red); } }
n/a
function _endoSplit(k) { var basis = this.endo.basis; var v1 = basis[0]; var v2 = basis[1]; var c1 = v2.b.mul(k).divRound(this.n); var c2 = v1.b.neg().mul(k).divRound(this.n); var p1 = c1.mul(v1.a); var p2 = c2.mul(v2.a); var q1 = c1.mul(v1.b); var q2 = c2.mul(v2.b); // Calculate answer var k1 = k.sub(p1).sub(p2); var k2 = q1.add(q2).neg(); return { k1: k1, k2: k2 }; }
...
};
ShortCurve.prototype._endoWnafMulAdd =
function _endoWnafMulAdd(points, coeffs, jacobianResult) {
var npoints = this._endoWnafT1;
var ncoeffs = this._endoWnafT2;
for (var i = 0; i < points.length; i++) {
var split = this._endoSplit(coeffs[i]);
var p = points[i];
var beta = p._getBeta();
if (split.k1.negative) {
split.k1.ineg();
p = p.neg(true);
}
...
function _endoWnafMulAdd(points, coeffs, jacobianResult) { var npoints = this._endoWnafT1; var ncoeffs = this._endoWnafT2; for (var i = 0; i < points.length; i++) { var split = this._endoSplit(coeffs[i]); var p = points[i]; var beta = p._getBeta(); if (split.k1.negative) { split.k1.ineg(); p = p.neg(true); } if (split.k2.negative) { split.k2.ineg(); beta = beta.neg(true); } npoints[i * 2] = p; npoints[i * 2 + 1] = beta; ncoeffs[i * 2] = split.k1; ncoeffs[i * 2 + 1] = split.k2; } var res = this._wnafMulAdd(1, npoints, ncoeffs, i * 2, jacobianResult); // Clean-up references to points and coefficients for (var j = 0; j < i * 2; j++) { npoints[j] = null; ncoeffs[j] = null; } return res; }
...
Point.prototype.mul = function mul(k) {
k = new BN(k, 16);
if (this._hasDoubles(k))
return this.curve._fixedNafMul(this, k);
else if (this.curve.endo)
return this.curve._endoWnafMulAdd([ this ], [ k ]);
else
return this.curve._wnafMul(this, k);
};
Point.prototype.mulAdd = function mulAdd(k1, p2, k2) {
var points = [ this, p2 ];
var coeffs = [ k1, k2 ];
...
function _getEndoBasis(lambda) { // aprxSqrt >= sqrt(this.n) var aprxSqrt = this.n.ushrn(Math.floor(this.n.bitLength() / 2)); // 3.74 // Run EGCD, until r(L + 1) < aprxSqrt var u = lambda; var v = this.n.clone(); var x1 = new BN(1); var y1 = new BN(0); var x2 = new BN(0); var y2 = new BN(1); // NOTE: all vectors are roots of: a + b * lambda = 0 (mod n) var a0; var b0; // First vector var a1; var b1; // Second vector var a2; var b2; var prevR; var i = 0; var r; var x; while (u.cmpn(0) !== 0) { var q = v.div(u); r = v.sub(q.mul(u)); x = x2.sub(q.mul(x1)); var y = y2.sub(q.mul(y1)); if (!a1 && r.cmp(aprxSqrt) < 0) { a0 = prevR.neg(); b0 = x1; a1 = r.neg(); b1 = x; } else if (a1 && ++i === 2) { break; } prevR = r; v = u; u = r; x2 = x1; x1 = x; y2 = y1; y1 = y; } a2 = r.neg(); b2 = x; var len1 = a1.sqr().add(b1.sqr()); var len2 = a2.sqr().add(b2.sqr()); if (len2.cmp(len1) >= 0) { a2 = a0; b2 = b0; } // Normalize signs if (a1.negative) { a1 = a1.neg(); b1 = b1.neg(); } if (a2.negative) { a2 = a2.neg(); b2 = b2.neg(); } return [ { a: a1, b: b1 }, { a: a2, b: b2 } ]; }
...
basis = conf.basis.map(function(vec) {
return {
a: new BN(vec.a, 16),
b: new BN(vec.b, 16)
};
});
} else {
basis = this._getEndoBasis(lambda);
}
return {
beta: beta,
lambda: lambda,
basis: basis
};
...
function _getEndoRoots(num) { // Find roots of for x^2 + x + 1 in F // Root = (-1 +- Sqrt(-3)) / 2 // var red = num === this.p ? this.red : BN.mont(num); var tinv = new BN(2).toRed(red).redInvm(); var ntinv = tinv.redNeg(); var s = new BN(3).toRed(red).redNeg().redSqrt().redMul(tinv); var l1 = ntinv.redAdd(s).fromRed(); var l2 = ntinv.redSub(s).fromRed(); return [ l1, l2 ]; }
...
// Compute beta and lambda, that lambda * P = (beta * Px; Py)
var beta;
var lambda;
if (conf.beta) {
beta = new BN(conf.beta, 16).toRed(this.red);
} else {
var betas = this._getEndoRoots(this.p);
// Choose the smallest beta
beta = betas[0].cmp(betas[1]) < 0 ? betas[0] : betas[1];
beta = beta.toRed(this.red);
}
if (conf.lambda) {
lambda = new BN(conf.lambda, 16);
} else {
...
function _getEndomorphism(conf) { // No efficient endomorphism if (!this.zeroA || !this.g || !this.n || this.p.modn(3) !== 1) return; // Compute beta and lambda, that lambda * P = (beta * Px; Py) var beta; var lambda; if (conf.beta) { beta = new BN(conf.beta, 16).toRed(this.red); } else { var betas = this._getEndoRoots(this.p); // Choose the smallest beta beta = betas[0].cmp(betas[1]) < 0 ? betas[0] : betas[1]; beta = beta.toRed(this.red); } if (conf.lambda) { lambda = new BN(conf.lambda, 16); } else { // Choose the lambda that is matching selected beta var lambdas = this._getEndoRoots(this.n); if (this.g.mul(lambdas[0]).x.cmp(this.g.x.redMul(beta)) === 0) { lambda = lambdas[0]; } else { lambda = lambdas[1]; assert(this.g.mul(lambda).x.cmp(this.g.x.redMul(beta)) === 0); } } // Get basis vectors, used for balanced length-two representation var basis; if (conf.basis) { basis = conf.basis.map(function(vec) { return { a: new BN(vec.a, 16), b: new BN(vec.b, 16) }; }); } else { basis = this._getEndoBasis(lambda); } return { beta: beta, lambda: lambda, basis: basis }; }
...
this.b = new BN(conf.b, 16).toRed(this.red);
this.tinv = this.two.redInvm();
this.zeroA = this.a.fromRed().cmpn(0) === 0;
this.threeA = this.a.fromRed().sub(this.p).cmpn(-3) === 0;
// If the curve is endomorphic, precalculate beta and lambda
this.endo = this._getEndomorphism(conf);
this._endoWnafT1 = new Array(4);
this._endoWnafT2 = new Array(4);
}
inherits(ShortCurve, Base);
module.exports = ShortCurve;
ShortCurve.prototype._getEndomorphism = function _getEndomorphism(conf) {
...
function jpoint(x, y, z) { return new JPoint(this, x, y, z); }
...
for (var j = 0; j < naf.length; j += doubles.step) {
var nafW = 0;
for (var k = j + doubles.step - 1; k >= j; k--)
nafW = (nafW << 1) + naf[k];
repr.push(nafW);
}
var a = this.jpoint(null, null, null);
var b = this.jpoint(null, null, null);
for (var i = I; i > 0; i--) {
for (var j = 0; j < repr.length; j++) {
var nafW = repr[j];
if (nafW === i)
b = b.mixedAdd(doubles.points[j]);
else if (nafW === -i)
...
function point(x, y, isRed) { return new Point(this, x, y, isRed); }
...
if ((bytes[0] === 0x04 || bytes[0] === 0x06 || bytes[0] === 0x07) &&
bytes.length - 1 === 2 * len) {
if (bytes[0] === 0x06)
assert(bytes[bytes.length - 1] % 2 === 0);
else if (bytes[0] === 0x07)
assert(bytes[bytes.length - 1] % 2 === 1);
var res = this.point(bytes.slice(1, 1 + len),
bytes.slice(1 + len, 1 + 2 * len));
return res;
} else if ((bytes[0] === 0x02 || bytes[0] === 0x03) &&
bytes.length - 1 === len) {
return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
}
...
function pointFromJSON(obj, red) { return Point.fromJSON(this, obj, red); }
...
// Useful for many curves
this.zero = new BN(0).toRed(this.red);
this.one = new BN(1).toRed(this.red);
this.two = new BN(2).toRed(this.red);
// Curve configuration, optional
this.n = conf.n && new BN(conf.n, 16);
this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed);
// Temporary arrays
this._wnafT1 = new Array(4);
this._wnafT2 = new Array(4);
this._wnafT3 = new Array(4);
this._wnafT4 = new Array(4);
...
function pointFromX(x, odd) { x = new BN(x, 16); if (!x.red) x = x.toRed(this.red); var y2 = x.redSqr().redMul(x).redIAdd(x.redMul(this.a)).redIAdd(this.b); var y = y2.redSqrt(); if (y.redSqr().redSub(y2).cmp(this.zero) !== 0) throw new Error('invalid point'); // XXX Is there any way to tell if the number is odd without converting it // to non-red form? var isOdd = y.fromRed().isOdd(); if (odd && !isOdd || !odd && isOdd) y = y.redNeg(); return this.point(x, y); }
...
var res = this.point(bytes.slice(1, 1 + len),
bytes.slice(1 + len, 1 + 2 * len));
return res;
} else if ((bytes[0] === 0x02 || bytes[0] === 0x03) &&
bytes.length - 1 === len) {
return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
}
throw new Error('Unknown point format');
};
BasePoint.prototype.encodeCompressed = function encodeCompressed(enc) {
return this.encode(enc, true);
};
...
function validate(point) { if (point.inf) return true; var x = point.x; var y = point.y; var ax = this.a.redMul(x); var rhs = x.redSqr().redMul(x).redIAdd(ax).redIAdd(this.b); return y.redSqr().redISub(rhs).cmpn(0) === 0; }
...
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O');
}
curves.PresetCurve = PresetCurve;
function defineCurve(name, options) {
Object.defineProperty(curves, name, {
configurable: true,
...
function PresetCurve(options) { if (options.type === 'short') this.curve = new elliptic.curve.short(options); else if (options.type === 'edwards') this.curve = new elliptic.curve.edwards(options); else this.curve = new elliptic.curve.mont(options); this.g = this.curve.g; this.n = this.curve.n; this.hash = options.hash; assert(this.g.validate(), 'Invalid curve'); assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O'); }
n/a
function SHA256() { if (!(this instanceof SHA256)) return new SHA256(); BlockHash.call(this); this.h = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]; this.k = sha256_K; this.W = new Array(64); }
...
var h = this.hashInt(sig.Rencoded(), key.pubBytes(), message);
var SG = this.g.mul(sig.S());
var RplusAh = sig.R().add(key.pub().mul(h));
return RplusAh.eq(SG);
};
EDDSA.prototype.hashInt = function hashInt() {
var hash = this.hash();
for (var i = 0; i < arguments.length; i++)
hash.update(arguments[i]);
return utils.intFromLE(hash.digest()).umod(this.curve.n);
};
EDDSA.prototype.keyFromPublic = function keyFromPublic(pub) {
return KeyPair.fromPublic(this, pub);
...
function digest(enc) { if (enc === 'hex') return utils.toHex32(this.h, 'big'); else return utils.split32(this.h, 'big'); }
n/a
function _update(msg, start) { var W = this.W; for (var i = 0; i < 16; i++) W[i] = msg[start + i]; for (; i < W.length; i++) W[i] = sum32_4(g1_256(W[i - 2]), W[i - 7], g0_256(W[i - 15]), W[i - 16]); var a = this.h[0]; var b = this.h[1]; var c = this.h[2]; var d = this.h[3]; var e = this.h[4]; var f = this.h[5]; var g = this.h[6]; var h = this.h[7]; assert(this.k.length === W.length); for (var i = 0; i < W.length; i++) { var T1 = sum32_5(h, s1_256(e), ch32(e, f, g), this.k[i], W[i]); var T2 = sum32(s0_256(a), maj32(a, b, c)); h = g; g = f; f = e; e = sum32(d, T1); d = c; c = b; b = a; a = sum32(T1, T2); } this.h[0] = sum32(this.h[0], a); this.h[1] = sum32(this.h[1], b); this.h[2] = sum32(this.h[2], c); this.h[3] = sum32(this.h[3], d); this.h[4] = sum32(this.h[4], e); this.h[5] = sum32(this.h[5], f); this.h[6] = sum32(this.h[6], g); this.h[7] = sum32(this.h[7], h); }
n/a
function SHA256() { if (!(this instanceof SHA256)) return new SHA256(); BlockHash.call(this); this.h = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]; this.k = sha256_K; this.W = new Array(64); }
...
var h = this.hashInt(sig.Rencoded(), key.pubBytes(), message);
var SG = this.g.mul(sig.S());
var RplusAh = sig.R().add(key.pub().mul(h));
return RplusAh.eq(SG);
};
EDDSA.prototype.hashInt = function hashInt() {
var hash = this.hash();
for (var i = 0; i < arguments.length; i++)
hash.update(arguments[i]);
return utils.intFromLE(hash.digest()).umod(this.curve.n);
};
EDDSA.prototype.keyFromPublic = function keyFromPublic(pub) {
return KeyPair.fromPublic(this, pub);
...
function SHA256() { if (!(this instanceof SHA256)) return new SHA256(); BlockHash.call(this); this.h = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]; this.k = sha256_K; this.W = new Array(64); }
...
var h = this.hashInt(sig.Rencoded(), key.pubBytes(), message);
var SG = this.g.mul(sig.S());
var RplusAh = sig.R().add(key.pub().mul(h));
return RplusAh.eq(SG);
};
EDDSA.prototype.hashInt = function hashInt() {
var hash = this.hash();
for (var i = 0; i < arguments.length; i++)
hash.update(arguments[i]);
return utils.intFromLE(hash.digest()).umod(this.curve.n);
};
EDDSA.prototype.keyFromPublic = function keyFromPublic(pub) {
return KeyPair.fromPublic(this, pub);
...
function SHA256() { if (!(this instanceof SHA256)) return new SHA256(); BlockHash.call(this); this.h = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]; this.k = sha256_K; this.W = new Array(64); }
...
var h = this.hashInt(sig.Rencoded(), key.pubBytes(), message);
var SG = this.g.mul(sig.S());
var RplusAh = sig.R().add(key.pub().mul(h));
return RplusAh.eq(SG);
};
EDDSA.prototype.hashInt = function hashInt() {
var hash = this.hash();
for (var i = 0; i < arguments.length; i++)
hash.update(arguments[i]);
return utils.intFromLE(hash.digest()).umod(this.curve.n);
};
EDDSA.prototype.keyFromPublic = function keyFromPublic(pub) {
return KeyPair.fromPublic(this, pub);
...
function SHA256() { if (!(this instanceof SHA256)) return new SHA256(); BlockHash.call(this); this.h = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]; this.k = sha256_K; this.W = new Array(64); }
...
var h = this.hashInt(sig.Rencoded(), key.pubBytes(), message);
var SG = this.g.mul(sig.S());
var RplusAh = sig.R().add(key.pub().mul(h));
return RplusAh.eq(SG);
};
EDDSA.prototype.hashInt = function hashInt() {
var hash = this.hash();
for (var i = 0; i < arguments.length; i++)
hash.update(arguments[i]);
return utils.intFromLE(hash.digest()).umod(this.curve.n);
};
EDDSA.prototype.keyFromPublic = function keyFromPublic(pub) {
return KeyPair.fromPublic(this, pub);
...
function SHA384() { if (!(this instanceof SHA384)) return new SHA384(); SHA512.call(this); this.h = [ 0xcbbb9d5d, 0xc1059ed8, 0x629a292a, 0x367cd507, 0x9159015a, 0x3070dd17, 0x152fecd8, 0xf70e5939, 0x67332667, 0xffc00b31, 0x8eb44a87, 0x68581511, 0xdb0c2e0d, 0x64f98fa7, 0x47b5481d, 0xbefa4fa4 ]; }
...
var h = this.hashInt(sig.Rencoded(), key.pubBytes(), message);
var SG = this.g.mul(sig.S());
var RplusAh = sig.R().add(key.pub().mul(h));
return RplusAh.eq(SG);
};
EDDSA.prototype.hashInt = function hashInt() {
var hash = this.hash();
for (var i = 0; i < arguments.length; i++)
hash.update(arguments[i]);
return utils.intFromLE(hash.digest()).umod(this.curve.n);
};
EDDSA.prototype.keyFromPublic = function keyFromPublic(pub) {
return KeyPair.fromPublic(this, pub);
...
function digest(enc) { if (enc === 'hex') return utils.toHex32(this.h.slice(0, 12), 'big'); else return utils.split32(this.h.slice(0, 12), 'big'); }
n/a
function SHA512() { if (!(this instanceof SHA512)) return new SHA512(); BlockHash.call(this); this.h = [ 0x6a09e667, 0xf3bcc908, 0xbb67ae85, 0x84caa73b, 0x3c6ef372, 0xfe94f82b, 0xa54ff53a, 0x5f1d36f1, 0x510e527f, 0xade682d1, 0x9b05688c, 0x2b3e6c1f, 0x1f83d9ab, 0xfb41bd6b, 0x5be0cd19, 0x137e2179 ]; this.k = sha512_K; this.W = new Array(160); }
...
var h = this.hashInt(sig.Rencoded(), key.pubBytes(), message);
var SG = this.g.mul(sig.S());
var RplusAh = sig.R().add(key.pub().mul(h));
return RplusAh.eq(SG);
};
EDDSA.prototype.hashInt = function hashInt() {
var hash = this.hash();
for (var i = 0; i < arguments.length; i++)
hash.update(arguments[i]);
return utils.intFromLE(hash.digest()).umod(this.curve.n);
};
EDDSA.prototype.keyFromPublic = function keyFromPublic(pub) {
return KeyPair.fromPublic(this, pub);
...
function digest(enc) { if (enc === 'hex') return utils.toHex32(this.h, 'big'); else return utils.split32(this.h, 'big'); }
n/a
function _prepareBlock(msg, start) { var W = this.W; // 32 x 32bit words for (var i = 0; i < 32; i++) W[i] = msg[start + i]; for (; i < W.length; i += 2) { var c0_hi = g1_512_hi(W[i - 4], W[i - 3]); // i - 2 var c0_lo = g1_512_lo(W[i - 4], W[i - 3]); var c1_hi = W[i - 14]; // i - 7 var c1_lo = W[i - 13]; var c2_hi = g0_512_hi(W[i - 30], W[i - 29]); // i - 15 var c2_lo = g0_512_lo(W[i - 30], W[i - 29]); var c3_hi = W[i - 32]; // i - 16 var c3_lo = W[i - 31]; W[i] = sum64_4_hi(c0_hi, c0_lo, c1_hi, c1_lo, c2_hi, c2_lo, c3_hi, c3_lo); W[i + 1] = sum64_4_lo(c0_hi, c0_lo, c1_hi, c1_lo, c2_hi, c2_lo, c3_hi, c3_lo); } }
n/a
function _update(msg, start) { this._prepareBlock(msg, start); var W = this.W; var ah = this.h[0]; var al = this.h[1]; var bh = this.h[2]; var bl = this.h[3]; var ch = this.h[4]; var cl = this.h[5]; var dh = this.h[6]; var dl = this.h[7]; var eh = this.h[8]; var el = this.h[9]; var fh = this.h[10]; var fl = this.h[11]; var gh = this.h[12]; var gl = this.h[13]; var hh = this.h[14]; var hl = this.h[15]; assert(this.k.length === W.length); for (var i = 0; i < W.length; i += 2) { var c0_hi = hh; var c0_lo = hl; var c1_hi = s1_512_hi(eh, el); var c1_lo = s1_512_lo(eh, el); var c2_hi = ch64_hi(eh, el, fh, fl, gh, gl); var c2_lo = ch64_lo(eh, el, fh, fl, gh, gl); var c3_hi = this.k[i]; var c3_lo = this.k[i + 1]; var c4_hi = W[i]; var c4_lo = W[i + 1]; var T1_hi = sum64_5_hi(c0_hi, c0_lo, c1_hi, c1_lo, c2_hi, c2_lo, c3_hi, c3_lo, c4_hi, c4_lo); var T1_lo = sum64_5_lo(c0_hi, c0_lo, c1_hi, c1_lo, c2_hi, c2_lo, c3_hi, c3_lo, c4_hi, c4_lo); var c0_hi = s0_512_hi(ah, al); var c0_lo = s0_512_lo(ah, al); var c1_hi = maj64_hi(ah, al, bh, bl, ch, cl); var c1_lo = maj64_lo(ah, al, bh, bl, ch, cl); var T2_hi = sum64_hi(c0_hi, c0_lo, c1_hi, c1_lo); var T2_lo = sum64_lo(c0_hi, c0_lo, c1_hi, c1_lo); hh = gh; hl = gl; gh = fh; gl = fl; fh = eh; fl = el; eh = sum64_hi(dh, dl, T1_hi, T1_lo); el = sum64_lo(dl, dl, T1_hi, T1_lo); dh = ch; dl = cl; ch = bh; cl = bl; bh = ah; bl = al; ah = sum64_hi(T1_hi, T1_lo, T2_hi, T2_lo); al = sum64_lo(T1_hi, T1_lo, T2_hi, T2_lo); } sum64(this.h, 0, ah, al); sum64(this.h, 2, bh, bl); sum64(this.h, 4, ch, cl); sum64(this.h, 6, dh, dl); sum64(this.h, 8, eh, el); sum64(this.h, 10, fh, fl); sum64(this.h, 12, gh, gl); sum64(this.h, 14, hh, hl); }
n/a
function SHA256() { if (!(this instanceof SHA256)) return new SHA256(); BlockHash.call(this); this.h = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]; this.k = sha256_K; this.W = new Array(64); }
...
var h = this.hashInt(sig.Rencoded(), key.pubBytes(), message);
var SG = this.g.mul(sig.S());
var RplusAh = sig.R().add(key.pub().mul(h));
return RplusAh.eq(SG);
};
EDDSA.prototype.hashInt = function hashInt() {
var hash = this.hash();
for (var i = 0; i < arguments.length; i++)
hash.update(arguments[i]);
return utils.intFromLE(hash.digest()).umod(this.curve.n);
};
EDDSA.prototype.keyFromPublic = function keyFromPublic(pub) {
return KeyPair.fromPublic(this, pub);
...
function EC(options) { if (!(this instanceof EC)) return new EC(options); // Shortcut `elliptic.ec(curve-name)` if (typeof options === 'string') { assert(elliptic.curves.hasOwnProperty(options), 'Unknown curve ' + options); options = elliptic.curves[options]; } // Shortcut for `elliptic.ec(elliptic.curves.curveName)` if (options instanceof elliptic.curves.PresetCurve) options = { curve: options }; this.curve = options.curve.curve; this.n = this.curve.n; this.nh = this.n.ushrn(1); this.g = this.curve.g; // Point on curve this.g = options.curve.g; this.g.precompute(options.curve.n.bitLength() + 1); // Hash for function for DRBG this.hash = options.hash || options.curve.hash; }
...
var KeyPair = require('./key');
var Signature = require('./signature');
function EC(options) {
if (!(this instanceof EC))
return new EC(options);
// Shortcut `elliptic.ec(curve-name)`
if (typeof options === 'string') {
assert(elliptic.curves.hasOwnProperty(options), 'Unknown curve ' + options);
options = elliptic.curves[options];
}
// Shortcut for `elliptic.ec(elliptic.curves.curveName)`
...
function truncateToN(msg, truncOnly) { var delta = msg.byteLength() * 8 - this.n.bitLength(); if (delta > 0) msg = msg.ushrn(delta); if (!truncOnly && msg.cmp(this.n) >= 0) return msg.sub(this.n); else return msg; }
...
options = enc;
enc = null;
}
if (!options)
options = {};
key = this.keyFromPrivate(key, enc);
msg = this._truncateToN(new BN(msg, 16));
// Zero-extend key to provide enough entropy
var bytes = this.n.byteLength();
var bkey = key.getPrivate().toArray('be', bytes);
// Zero-extend nonce to have the same byte size as N
var nonce = msg.toArray('be', bytes);
...
function genKeyPair(options) { if (!options) options = {}; // Instantiate Hmac_DRBG var drbg = new HmacDRBG({ hash: this.hash, pers: options.pers, persEnc: options.persEnc || 'utf8', entropy: options.entropy || elliptic.rand(this.hash.hmacStrength), entropyEnc: options.entropy && options.entropyEnc || 'utf8', nonce: this.n.toArray() }); var bytes = this.n.byteLength(); var ns2 = this.n.sub(new BN(2)); do { var priv = new BN(drbg.generate(bytes)); if (priv.cmp(ns2) > 0) continue; priv.iaddn(1); return this.keyFromPrivate(priv); } while (true); }
...
var EC = require('elliptic').ec;
// Create and initialize EC context
// (better do it once and reuse it)
var ec = new EC('secp256k1');
// Generate keys
var key = ec.genKeyPair();
// Sign message (must be an array, or it'll be treated as a hex sequence)
var msg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
var signature = key.sign(msg);
// Export DER encoded signature in Array
var derSign = signature.toDER();
...
getKeyRecoveryParam = function (e, signature, Q, enc) { signature = new Signature(signature, enc); if (signature.recoveryParam !== null) return signature.recoveryParam; for (var i = 0; i < 4; i++) { var Qprime; try { Qprime = this.recoverPubKey(e, signature, i); } catch (e) { continue; } if (Qprime.eq(Q)) return i; } throw new Error('Unable to find valid recovery factor'); }
n/a
function keyFromPrivate(priv, enc) { return KeyPair.fromPrivate(this, priv, enc); }
...
var ns2 = this.n.sub(new BN(2));
do {
var priv = new BN(drbg.generate(bytes));
if (priv.cmp(ns2) > 0)
continue;
priv.iaddn(1);
return this.keyFromPrivate(priv);
} while (true);
};
EC.prototype._truncateToN = function truncateToN(msg, truncOnly) {
var delta = msg.byteLength() * 8 - this.n.bitLength();
if (delta > 0)
msg = msg.ushrn(delta);
...
function keyFromPublic(pub, enc) { return KeyPair.fromPublic(this, pub, enc); }
...
// 3) object with two hex-string properties (r and s)
var signature = 'b102ac...'; // case 1
var signature = new Buffer('...'); // case 2
var signature = { r: 'b1fc...', s: '9c42...' }; // case 3
// Import public key
var key = ec.keyFromPublic(pub, 'hex');
// Verify signature
console.log(key.verify(msg, signature));
```
### EdDSA
...
function keyPair(options) { return new KeyPair(this, options); }
n/a
recoverPubKey = function (msg, signature, j, enc) { assert((3 & j) === j, 'The recovery param is more than two bits'); signature = new Signature(signature, enc); var n = this.n; var e = new BN(msg); var r = signature.r; var s = signature.s; // A set LSB signifies that the y-coordinate is odd var isYOdd = j & 1; var isSecondKey = j >> 1; if (r.cmp(this.curve.p.umod(this.curve.n)) >= 0 && isSecondKey) throw new Error('Unable to find sencond key candinate'); // 1.1. Let x = r + jn. if (isSecondKey) r = this.curve.pointFromX(r.add(this.curve.n), isYOdd); else r = this.curve.pointFromX(r, isYOdd); var rInv = signature.r.invm(n); var s1 = n.sub(e).mul(rInv).umod(n); var s2 = s.mul(rInv).umod(n); // 1.6.1 Compute Q = r^-1 (sR - eG) // Q = r^-1 (sR + -eG) return this.g.mulAdd(s1, r, s2); }
...
signature = new Signature(signature, enc);
if (signature.recoveryParam !== null)
return signature.recoveryParam;
for (var i = 0; i < 4; i++) {
var Qprime;
try {
Qprime = this.recoverPubKey(e, signature, i);
} catch (e) {
continue;
}
if (Qprime.eq(Q))
return i;
}
...
function sign(msg, key, enc, options) { if (typeof enc === 'object') { options = enc; enc = null; } if (!options) options = {}; key = this.keyFromPrivate(key, enc); msg = this._truncateToN(new BN(msg, 16)); // Zero-extend key to provide enough entropy var bytes = this.n.byteLength(); var bkey = key.getPrivate().toArray('be', bytes); // Zero-extend nonce to have the same byte size as N var nonce = msg.toArray('be', bytes); // Instantiate Hmac_DRBG var drbg = new HmacDRBG({ hash: this.hash, entropy: bkey, nonce: nonce, pers: options.pers, persEnc: options.persEnc || 'utf8' }); // Number of bytes to generate var ns1 = this.n.sub(new BN(1)); for (var iter = 0; true; iter++) { var k = options.k ? options.k(iter) : new BN(drbg.generate(this.n.byteLength())); k = this._truncateToN(k, true); if (k.cmpn(1) <= 0 || k.cmp(ns1) >= 0) continue; var kp = this.g.mul(k); if (kp.isInfinity()) continue; var kpX = kp.getX(); var r = kpX.umod(this.n); if (r.cmpn(0) === 0) continue; var s = k.invm(this.n).mul(r.mul(key.getPrivate()).iadd(msg)); s = s.umod(this.n); if (s.cmpn(0) === 0) continue; var recoveryParam = (kp.getY().isOdd() ? 1 : 0) | (kpX.cmp(r) !== 0 ? 2 : 0); // Use complement of `s`, if it is > `n / 2` if (options.canonical && s.cmp(this.nh) > 0) { s = this.n.sub(s); recoveryParam ^= 1; } return new Signature({ r: r, s: s, recoveryParam: recoveryParam }); } }
...
var ec = new EC('secp256k1');
// Generate keys
var key = ec.genKeyPair();
// Sign message (must be an array, or it'll be treated as a hex sequence)
var msg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
var signature = key.sign(msg);
// Export DER encoded signature in Array
var derSign = signature.toDER();
// Verify signature
console.log(key.verify(msg, derSign));
...
function verify(msg, signature, key, enc) { msg = this._truncateToN(new BN(msg, 16)); key = this.keyFromPublic(key, enc); signature = new Signature(signature, 'hex'); // Perform primitive values validation var r = signature.r; var s = signature.s; if (r.cmpn(1) < 0 || r.cmp(this.n) >= 0) return false; if (s.cmpn(1) < 0 || s.cmp(this.n) >= 0) return false; // Validate signature var sinv = s.invm(this.n); var u1 = sinv.mul(msg).umod(this.n); var u2 = sinv.mul(r).umod(this.n); if (!this.curve._maxwellTrick) { var p = this.g.mulAdd(u1, key.getPublic(), u2); if (p.isInfinity()) return false; return p.getX().umod(this.n).cmp(r) === 0; } // NOTE: Greg Maxwell's trick, inspired by: // https://git.io/vad3K var p = this.g.jmulAdd(u1, key.getPublic(), u2); if (p.isInfinity()) return false; // Compare `p.x` of Jacobian point with `r`, // this will do `p.x == r * p.z^2` instead of multiplying `p.x` by the // inverse of `p.z^2` return p.eqXToP(r); }
...
var msg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
var signature = key.sign(msg);
// Export DER encoded signature in Array
var derSign = signature.toDER();
// Verify signature
console.log(key.verify(msg, derSign));
// CHECK WITH NO PRIVATE KEY
// Public key as '04 + x + y'
var pub = '04bb1fa3...';
// Signature MUST be either:
...
function EDDSA(curve) { assert(curve === 'ed25519', 'only tested with ed25519 so far'); if (!(this instanceof EDDSA)) return new EDDSA(curve); var curve = elliptic.curves[curve].curve; this.curve = curve; this.g = curve.g; this.g.precompute(curve.n.bitLength() + 1); this.pointClass = curve.point().constructor; this.encodingLength = Math.ceil(curve.n.bitLength() / 8); this.hash = hash.sha512; }
n/a
function decodeInt(bytes) { return utils.intFromLE(bytes); }
...
a[lastIx] &= 127;
a[lastIx] |= 64;
return a;
});
cachedProperty(KeyPair, 'priv', function priv() {
return this.eddsa.decodeInt(this.privBytes());
});
cachedProperty(KeyPair, 'hash', function hash() {
return this.eddsa.hash().update(this.secret()).digest();
});
cachedProperty(KeyPair, 'messagePrefix', function messagePrefix() {
...
function decodePoint(bytes) { bytes = utils.parseBytes(bytes); var lastIx = bytes.length - 1; var normed = bytes.slice(0, lastIx).concat(bytes[lastIx] & ~0x80); var xIsOdd = (bytes[lastIx] & 0x80) !== 0; var y = utils.intFromLE(normed); return this.curve.pointFromY(y, xIsOdd); }
...
} else if (this.ec.curve.type === 'short' ||
this.ec.curve.type === 'edwards') {
assert(key.x && key.y, 'Need both x and y coordinate');
}
this.pub = this.ec.curve.point(key.x, key.y);
return;
}
this.pub = this.ec.curve.decodePoint(key, enc);
};
// ECDH
KeyPair.prototype.derive = function derive(pub) {
return pub.mul(this.priv).getX();
};
...
function encodeInt(num) { return num.toArray('le', this.encodingLength); }
...
});
cachedProperty(Signature, 'Rencoded', function Rencoded() {
return this.eddsa.encodePoint(this.R());
});
cachedProperty(Signature, 'Sencoded', function Sencoded() {
return this.eddsa.encodeInt(this.S());
});
Signature.prototype.toBytes = function toBytes() {
return this.Rencoded().concat(this.Sencoded());
};
Signature.prototype.toHex = function toHex() {
...
function encodePoint(point) { var enc = point.getY().toArray('le', this.encodingLength); enc[this.encodingLength - 1] |= point.getX().isOdd() ? 0x80 : 0; return enc; }
...
* @returns {Signature} - signature
*/
EDDSA.prototype.sign = function sign(message, secret) {
message = parseBytes(message);
var key = this.keyFromSecret(secret);
var r = this.hashInt(key.messagePrefix(), message);
var R = this.g.mul(r);
var Rencoded = this.encodePoint(R);
var s_ = this.hashInt(Rencoded, key.pubBytes(), message)
.mul(key.priv());
var S = r.add(s_).umod(this.curve.n);
return this.makeSignature({ R: R, S: S, Rencoded: Rencoded });
};
/**
...
function hashInt() { var hash = this.hash(); for (var i = 0; i < arguments.length; i++) hash.update(arguments[i]); return utils.intFromLE(hash.digest()).umod(this.curve.n); }
...
* @param {Array|String} message - message bytes
* @param {Array|String|KeyPair} secret - secret bytes or a keypair
* @returns {Signature} - signature
*/
EDDSA.prototype.sign = function sign(message, secret) {
message = parseBytes(message);
var key = this.keyFromSecret(secret);
var r = this.hashInt(key.messagePrefix(), message);
var R = this.g.mul(r);
var Rencoded = this.encodePoint(R);
var s_ = this.hashInt(Rencoded, key.pubBytes(), message)
.mul(key.priv());
var S = r.add(s_).umod(this.curve.n);
return this.makeSignature({ R: R, S: S, Rencoded: Rencoded });
};
...
function isPoint(val) { return val instanceof this.pointClass; }
...
* @param {Point} [params.pub] - public key point (aka `A` in eddsa terms)
* @param {Array<Byte>} [params.pub] - public key point encoded as bytes
*
*/
function KeyPair(eddsa, params) {
this.eddsa = eddsa;
this._secret = parseBytes(params.secret);
if (eddsa.isPoint(params.pub))
this._pub = params.pub;
else
this._pubBytes = parseBytes(params.pub);
}
KeyPair.fromPublic = function fromPublic(eddsa, pub) {
if (pub instanceof KeyPair)
...
function keyFromPublic(pub) { return KeyPair.fromPublic(this, pub); }
...
// 3) object with two hex-string properties (r and s)
var signature = 'b102ac...'; // case 1
var signature = new Buffer('...'); // case 2
var signature = { r: 'b1fc...', s: '9c42...' }; // case 3
// Import public key
var key = ec.keyFromPublic(pub, 'hex');
// Verify signature
console.log(key.verify(msg, signature));
```
### EdDSA
...
function keyFromSecret(secret) { return KeyPair.fromSecret(this, secret); }
...
var EdDSA = require('elliptic').eddsa;
// Create and initialize EdDSA context
// (better do it once and reuse it)
var ec = new EdDSA('ed25519');
// Create key pair from secret
var key = ec.keyFromSecret('693e3c...'); // hex string, array or Buffer
// Sign message (must be an array, or it'll be treated as a hex sequence)
var msg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
var signature = key.sign(msg).toHex();
// Verify signature
console.log(key.verify(msg, signature));
...
function makeSignature(sig) { if (sig instanceof Signature) return sig; return new Signature(this, sig); }
...
var key = this.keyFromSecret(secret);
var r = this.hashInt(key.messagePrefix(), message);
var R = this.g.mul(r);
var Rencoded = this.encodePoint(R);
var s_ = this.hashInt(Rencoded, key.pubBytes(), message)
.mul(key.priv());
var S = r.add(s_).umod(this.curve.n);
return this.makeSignature({ R: R, S: S, Rencoded: Rencoded });
};
/**
* @param {Array} message - message bytes
* @param {Array|String|Signature} sig - sig bytes
* @param {Array|String|Point|KeyPair} pub - public key
* @returns {Boolean} - true if public key matches sig of message
...
function sign(message, secret) { message = parseBytes(message); var key = this.keyFromSecret(secret); var r = this.hashInt(key.messagePrefix(), message); var R = this.g.mul(r); var Rencoded = this.encodePoint(R); var s_ = this.hashInt(Rencoded, key.pubBytes(), message) .mul(key.priv()); var S = r.add(s_).umod(this.curve.n); return this.makeSignature({ R: R, S: S, Rencoded: Rencoded }); }
...
var ec = new EC('secp256k1');
// Generate keys
var key = ec.genKeyPair();
// Sign message (must be an array, or it'll be treated as a hex sequence)
var msg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
var signature = key.sign(msg);
// Export DER encoded signature in Array
var derSign = signature.toDER();
// Verify signature
console.log(key.verify(msg, derSign));
...
function verify(message, sig, pub) { message = parseBytes(message); sig = this.makeSignature(sig); var key = this.keyFromPublic(pub); var h = this.hashInt(sig.Rencoded(), key.pubBytes(), message); var SG = this.g.mul(sig.S()); var RplusAh = sig.R().add(key.pub().mul(h)); return RplusAh.eq(SG); }
...
var msg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
var signature = key.sign(msg);
// Export DER encoded signature in Array
var derSign = signature.toDER();
// Verify signature
console.log(key.verify(msg, derSign));
// CHECK WITH NO PRIVATE KEY
// Public key as '04 + x + y'
var pub = '04bb1fa3...';
// Signature MUST be either:
...
function KeyPair(ec, options) { this.ec = ec; this.priv = null; this.pub = null; // KeyPair(ec, { priv: ..., pub: ... }) if (options.priv) this._importPrivate(options.priv, options.privEnc); if (options.pub) this._importPublic(options.pub, options.pubEnc); }
n/a
function fromPrivate(ec, priv, enc) { if (priv instanceof KeyPair) return priv; return new KeyPair(ec, { priv: priv, privEnc: enc }); }
...
module.exports = EC;
EC.prototype.keyPair = function keyPair(options) {
return new KeyPair(this, options);
};
EC.prototype.keyFromPrivate = function keyFromPrivate(priv, enc) {
return KeyPair.fromPrivate(this, priv, enc);
};
EC.prototype.keyFromPublic = function keyFromPublic(pub, enc) {
return KeyPair.fromPublic(this, pub, enc);
};
EC.prototype.genKeyPair = function genKeyPair(options) {
...
function fromPublic(ec, pub, enc) { if (pub instanceof KeyPair) return pub; return new KeyPair(ec, { pub: pub, pubEnc: enc }); }
...
};
EC.prototype.keyFromPrivate = function keyFromPrivate(priv, enc) {
return KeyPair.fromPrivate(this, priv, enc);
};
EC.prototype.keyFromPublic = function keyFromPublic(pub, enc) {
return KeyPair.fromPublic(this, pub, enc);
};
EC.prototype.genKeyPair = function genKeyPair(options) {
if (!options)
options = {};
// Instantiate Hmac_DRBG
...
function _importPrivate(key, enc) { this.priv = new BN(key, enc || 16); // Ensure that the priv won't be bigger than n, otherwise we may fail // in fixed multiplication method this.priv = this.priv.umod(this.ec.curve.n); }
...
function KeyPair(ec, options) {
this.ec = ec;
this.priv = null;
this.pub = null;
// KeyPair(ec, { priv: ..., pub: ... })
if (options.priv)
this._importPrivate(options.priv, options.privEnc);
if (options.pub)
this._importPublic(options.pub, options.pubEnc);
}
module.exports = KeyPair;
KeyPair.fromPublic = function fromPublic(ec, pub, enc) {
if (pub instanceof KeyPair)
...
function _importPublic(key, enc) { if (key.x || key.y) { // Montgomery points only have an `x` coordinate. // Weierstrass/Edwards points on the other hand have both `x` and // `y` coordinates. if (this.ec.curve.type === 'mont') { assert(key.x, 'Need x coordinate'); } else if (this.ec.curve.type === 'short' || this.ec.curve.type === 'edwards') { assert(key.x && key.y, 'Need both x and y coordinate'); } this.pub = this.ec.curve.point(key.x, key.y); return; } this.pub = this.ec.curve.decodePoint(key, enc); }
...
this.priv = null;
this.pub = null;
// KeyPair(ec, { priv: ..., pub: ... })
if (options.priv)
this._importPrivate(options.priv, options.privEnc);
if (options.pub)
this._importPublic(options.pub, options.pubEnc);
}
module.exports = KeyPair;
KeyPair.fromPublic = function fromPublic(ec, pub, enc) {
if (pub instanceof KeyPair)
return pub;
...
function derive(pub) { return pub.mul(this.priv).getX(); }
...
var EC = require('elliptic').ec;
var ec = new EC('curve25519');
// Generate keys
var key1 = ec.genKeyPair();
var key2 = ec.genKeyPair();
var shared1 = key1.derive(key2.getPublic());
var shared2 = key2.derive(key1.getPublic());
console.log('Both shared secrets are BN instances');
console.log(shared1.toString(16));
console.log(shared2.toString(16));
```
...
function getPrivate(enc) { if (enc === 'hex') return this.priv.toString(16, 2); else return this.priv; }
...
var EC = require('elliptic').ec;
var ec = new EC('curve25519');
var A = ec.genKeyPair();
var B = ec.genKeyPair();
var C = ec.genKeyPair();
var AB = A.getPublic().mul(B.getPrivate())
var BC = B.getPublic().mul(C.getPrivate())
var CA = C.getPublic().mul(A.getPrivate())
var ABC = AB.mul(C.getPrivate())
var BCA = BC.mul(A.getPrivate())
var CAB = CA.mul(B.getPrivate())
...
function getPublic(compact, enc) { // compact is optional argument if (typeof compact === 'string') { enc = compact; compact = null; } if (!this.pub) this.pub = this.ec.g.mul(this.priv); if (!enc) return this.pub; return this.pub.encode(enc, compact); }
...
var EC = require('elliptic').ec;
var ec = new EC('curve25519');
// Generate keys
var key1 = ec.genKeyPair();
var key2 = ec.genKeyPair();
var shared1 = key1.derive(key2.getPublic());
var shared2 = key2.derive(key1.getPublic());
console.log('Both shared secrets are BN instances');
console.log(shared1.toString(16));
console.log(shared2.toString(16));
```
...
function inspect() { return '<Key priv: ' + (this.priv && this.priv.toString(16, 2)) + ' pub: ' + (this.pub && this.pub.inspect()) + ' >'; }
...
KeyPair.prototype.verify = function verify(msg, signature) {
return this.ec.verify(msg, signature, this);
};
KeyPair.prototype.inspect = function inspect() {
return '<Key priv: ' + (this.priv && this.priv.toString(16, 2)) +
' pub: ' + (this.pub && this.pub.inspect()) + ' >
;';
};
...
function sign(msg, enc, options) { return this.ec.sign(msg, this, enc, options); }
...
var ec = new EC('secp256k1');
// Generate keys
var key = ec.genKeyPair();
// Sign message (must be an array, or it'll be treated as a hex sequence)
var msg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
var signature = key.sign(msg);
// Export DER encoded signature in Array
var derSign = signature.toDER();
// Verify signature
console.log(key.verify(msg, derSign));
...
function validate() { var pub = this.getPublic(); if (pub.isInfinity()) return { result: false, reason: 'Invalid public key' }; if (!pub.validate()) return { result: false, reason: 'Public key is not a point' }; if (!pub.mul(this.ec.curve.n).isInfinity()) return { result: false, reason: 'Public key * N != O' }; return { result: true, reason: null }; }
...
this.curve = new elliptic.curve.edwards(options);
else
this.curve = new elliptic.curve.mont(options);
this.g = this.curve.g;
this.n = this.curve.n;
this.hash = options.hash;
assert(this.g.validate(), 'Invalid curve');
assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O');
}
curves.PresetCurve = PresetCurve;
function defineCurve(name, options) {
Object.defineProperty(curves, name, {
configurable: true,
...
function verify(msg, signature) { return this.ec.verify(msg, signature, this); }
...
var msg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
var signature = key.sign(msg);
// Export DER encoded signature in Array
var derSign = signature.toDER();
// Verify signature
console.log(key.verify(msg, derSign));
// CHECK WITH NO PRIVATE KEY
// Public key as '04 + x + y'
var pub = '04bb1fa3...';
// Signature MUST be either:
...
function rand(len) { if (!r) r = new Rand(null); return r.generate(len); }
...
options = {};
// Instantiate Hmac_DRBG
var drbg = new HmacDRBG({
hash: this.hash,
pers: options.pers,
persEnc: options.persEnc || 'utf8',
entropy: options.entropy || elliptic.rand(this.hash.hmacStrength),
entropyEnc: options.entropy && options.entropyEnc || 'utf8',
nonce: this.n.toArray()
});
var bytes = this.n.byteLength();
var ns2 = this.n.sub(new BN(2));
do {
...
function Rand(rand) { this.rand = rand; }
n/a
function Rand(rand) { this.rand = rand; }
n/a
function _rand(n) { return crypto.randomBytes(n); }
n/a
function generate(len) { return this._rand(len); }
...
entropyEnc: options.entropy && options.entropyEnc || 'utf8',
nonce: this.n.toArray()
});
var bytes = this.n.byteLength();
var ns2 = this.n.sub(new BN(2));
do {
var priv = new BN(drbg.generate(bytes));
if (priv.cmp(ns2) > 0)
continue;
priv.iaddn(1);
return this.keyFromPrivate(priv);
} while (true);
};
...
function Signature(options, enc) { if (options instanceof Signature) return options; if (this._importDER(options, enc)) return; assert(options.r && options.s, 'Signature without r or s'); this.r = new BN(options.r, 16); this.s = new BN(options.s, 16); if (options.recoveryParam === undefined) this.recoveryParam = null; else this.recoveryParam = options.recoveryParam; }
n/a
function _importDER(data, enc) { data = utils.toArray(data, enc); var p = new Position(); if (data[p.place++] !== 0x30) { return false; } var len = getLength(data, p); if ((len + p.place) !== data.length) { return false; } if (data[p.place++] !== 0x02) { return false; } var rlen = getLength(data, p); var r = data.slice(p.place, rlen + p.place); p.place += rlen; if (data[p.place++] !== 0x02) { return false; } var slen = getLength(data, p); if (data.length !== slen + p.place) { return false; } var s = data.slice(p.place, slen + p.place); if (r[0] === 0 && (r[1] & 0x80)) { r = r.slice(1); } if (s[0] === 0 && (s[1] & 0x80)) { s = s.slice(1); } this.r = new BN(r); this.s = new BN(s); this.recoveryParam = null; return true; }
...
var utils = elliptic.utils;
var assert = utils.assert;
function Signature(options, enc) {
if (options instanceof Signature)
return options;
if (this._importDER(options, enc))
return;
assert(options.r && options.s, 'Signature without r or s');
this.r = new BN(options.r, 16);
this.s = new BN(options.s, 16);
if (options.recoveryParam === undefined)
this.recoveryParam = null;
...
function toDER(enc) { var r = this.r.toArray(); var s = this.s.toArray(); // Pad values if (r[0] & 0x80) r = [ 0 ].concat(r); // Pad values if (s[0] & 0x80) s = [ 0 ].concat(s); r = rmPadding(r); s = rmPadding(s); while (!s[0] && !(s[1] & 0x80)) { s = s.slice(1); } var arr = [ 0x02 ]; constructLength(arr, r.length); arr = arr.concat(r); arr.push(0x02); constructLength(arr, s.length); var backHalf = arr.concat(s); var res = [ 0x30 ]; constructLength(res, backHalf.length); res = res.concat(backHalf); return utils.encode(res, enc); }
...
var key = ec.genKeyPair();
// Sign message (must be an array, or it'll be treated as a hex sequence)
var msg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
var signature = key.sign(msg);
// Export DER encoded signature in Array
var derSign = signature.toDER();
// Verify signature
console.log(key.verify(msg, derSign));
// CHECK WITH NO PRIVATE KEY
// Public key as '04 + x + y'
...
function assert(val, msg) { if (!val) throw new Error(msg || 'Assertion failed'); }
n/a
function cachedProperty(obj, name, computer) { var key = '_' + name; obj.prototype[name] = function cachedProperty() { return this[key] !== undefined ? this[key] : this[key] = computer.call(this); }; }
n/a
function encode(arr, enc) { if (enc === 'hex') return toHex(arr); else return arr; }
...
bytes.length - 1 === len) {
return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
}
throw new Error('Unknown point format');
};
BasePoint.prototype.encodeCompressed = function encodeCompressed(enc) {
return this.encode(enc, true);
};
BasePoint.prototype._encode = function _encode(compact) {
var len = this.curve.p.byteLength();
var x = this.getX().toArray('be', len);
if (compact)
...
function getJSF(k1, k2) { var jsf = [ [], [] ]; k1 = k1.clone(); k2 = k2.clone(); var d1 = 0; var d2 = 0; while (k1.cmpn(-d1) > 0 || k2.cmpn(-d2) > 0) { // First phase var m14 = (k1.andln(3) + d1) & 3; var m24 = (k2.andln(3) + d2) & 3; if (m14 === 3) m14 = -1; if (m24 === 3) m24 = -1; var u1; if ((m14 & 1) === 0) { u1 = 0; } else { var m8 = (k1.andln(7) + d1) & 7; if ((m8 === 3 || m8 === 5) && m24 === 2) u1 = -m14; else u1 = m14; } jsf[0].push(u1); var u2; if ((m24 & 1) === 0) { u2 = 0; } else { var m8 = (k2.andln(7) + d2) & 7; if ((m8 === 3 || m8 === 5) && m14 === 2) u2 = -m24; else u2 = m24; } jsf[1].push(u2); // Second phase if (2 * d1 === u1 + 1) d1 = 1 - d1; if (2 * d2 === u2 + 1) d2 = 1 - d2; k1.iushrn(1); k2.iushrn(1); } return jsf; }
n/a
function getNAF(num, w) { var naf = []; var ws = 1 << (w + 1); var k = num.clone(); while (k.cmpn(1) >= 0) { var z; if (k.isOdd()) { var mod = k.andln(ws - 1); if (mod > (ws >> 1) - 1) z = (ws >> 1) - mod; else z = mod; k.isubn(z); } else { z = 0; } naf.push(z); // Optimization, shift by word if possible var shift = (k.cmpn(0) !== 0 && k.andln(ws - 1) === 0) ? (w + 1) : 1; for (var i = 1; i < shift; i++) naf.push(0); k.iushrn(shift); } return naf; }
n/a
function intFromLE(bytes) { return new BN(bytes, 'hex', 'le'); }
...
return RplusAh.eq(SG);
};
EDDSA.prototype.hashInt = function hashInt() {
var hash = this.hash();
for (var i = 0; i < arguments.length; i++)
hash.update(arguments[i]);
return utils.intFromLE(hash.digest()).umod(this.curve.n);
};
EDDSA.prototype.keyFromPublic = function keyFromPublic(pub) {
return KeyPair.fromPublic(this, pub);
};
EDDSA.prototype.keyFromSecret = function keyFromSecret(secret) {
...
function parseBytes(bytes) { return typeof bytes === 'string' ? utils.toArray(bytes, 'hex') : bytes; }
...
EDDSA.prototype.encodePoint = function encodePoint(point) {
var enc = point.getY().toArray('le', this.encodingLength);
enc[this.encodingLength - 1] |= point.getX().isOdd() ? 0x80 : 0;
return enc;
};
EDDSA.prototype.decodePoint = function decodePoint(bytes) {
bytes = utils.parseBytes(bytes);
var lastIx = bytes.length - 1;
var normed = bytes.slice(0, lastIx).concat(bytes[lastIx] & ~0x80);
var xIsOdd = (bytes[lastIx] & 0x80) !== 0;
var y = utils.intFromLE(normed);
return this.curve.pointFromY(y, xIsOdd);
...
function toArray(msg, enc) { if (Array.isArray(msg)) return msg.slice(); if (!msg) return []; var res = []; if (typeof msg !== 'string') { for (var i = 0; i < msg.length; i++) res[i] = msg[i] | 0; return res; } if (enc === 'hex') { msg = msg.replace(/[^a-z0-9]+/ig, ''); if (msg.length % 2 !== 0) msg = '0' + msg; for (var i = 0; i < msg.length; i += 2) res.push(parseInt(msg[i] + msg[i + 1], 16)); } else { for (var i = 0; i < msg.length; i++) { var c = msg.charCodeAt(i); var hi = c >> 8; var lo = c & 0xff; if (hi) res.push(hi, lo); else res.push(lo); } } return res; }
...
return this[key] !== undefined ? this[key] :
this[key] = computer.call(this);
};
}
utils.cachedProperty = cachedProperty;
function parseBytes(bytes) {
return typeof bytes === 'string' ? utils.toArray(bytes, 'hex') :
bytes;
}
utils.parseBytes = parseBytes;
function intFromLE(bytes) {
return new BN(bytes, 'hex', 'le');
}
...
function toHex(msg) { var res = ''; for (var i = 0; i < msg.length; i++) res += zero2(msg[i].toString(16)); return res; }
...
var ec = new EdDSA('ed25519');
// Create key pair from secret
var key = ec.keyFromSecret('693e3c...'); // hex string, array or Buffer
// Sign message (must be an array, or it'll be treated as a hex sequence)
var msg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
var signature = key.sign(msg).toHex();
// Verify signature
console.log(key.verify(msg, signature));
// CHECK WITH NO PRIVATE KEY
// Import public key
...
function zero2(word) { if (word.length === 1) return '0' + word; else return word; }
n/a
function assert(val, msg) { if (!val) throw new Error(msg || 'Assertion failed'); }
n/a
function assertEqual(l, r, msg) { if (l != r) throw new Error(msg || ('Assertion failed: ' + l + ' != ' + r)); }
n/a