api documentation for ml (v2.0.0)

Machine learning tools

table of contents

  1. module ml
    1. function ml.HashTable (options = {})
    2. function ml.Math.SparseMatrix (rows, columns, options = {})
    3. function ml.Matrix (Array)
    4. function ml.PadArray (data, options)
    5. function ml.SL.KNN (reload, model)
    6. function ml.SL.NaiveBayes (reload, model)
    7. function ml.SL.PLS (X, Y)
    8. function ml.SL.SVM (options)
    9. function ml.binarySearch (haystack, needle, comparator, low, high)
    10. function ml.nn.SOM (x, y, options, reload)
    11. object ml.AU
    12. object ml.ArrayUtils
    13. object ml.BitArray
    14. object ml.Clust
    15. object ml.Clust.hclust
    16. object ml.Math
    17. object ml.Math.BellOptimizer
    18. object ml.Math.CurveFitting
    19. object ml.Math.Distance
    20. object ml.Math.Similarity
    21. object ml.Math.SparseMatrix.prototype
    22. object ml.Matrix.DC
    23. object ml.Matrix.DC.CholeskyDecomposition.prototype
    24. object ml.Matrix.DC.LuDecomposition.prototype
    25. object ml.Matrix.DC.QrDecomposition.prototype
    26. object ml.Matrix.DC.SingularValueDecomposition.prototype
    27. object ml.Matrix.algebra
    28. object ml.Matrix.prototype
    29. object ml.NN
    30. object ml.RNG
    31. object ml.Regression
    32. object ml.Regression.NLR
    33. object ml.SL
    34. object ml.SL.CV
    35. object ml.SL.KNN.prototype
    36. object ml.SL.NaiveBayes.prototype
    37. object ml.SL.PLS.OPLS.prototype
    38. object ml.SL.SVM.prototype
    39. object ml.Stat
    40. object ml.Stat.array
    41. object ml.Stat.matrix
    42. object ml.nn
    43. object ml.nn.SOM.prototype
    44. object ml.numSort
  2. module ml.AU
    1. function ml.AU.SNV (data)
    2. function ml.AU.applyDotProduct (firstVector, secondVector)
    3. function ml.AU.coordArrayToCoordMatrix (array, dimensions)
    4. function ml.AU.coordArrayToPoints (array, dimensions)
    5. function ml.AU.coordMatrixToCoordArray (coordMatrix)
    6. function ml.AU.coordMatrixToPoints (matrix)
    7. function ml.AU.getEquallySpacedData (x, y, options)
    8. function ml.AU.pointsToCoordArray (points)
    9. function ml.AU.pointsToCoordMatrix (matrix)
    10. function ml.AU.scale (input, options)
  3. module ml.BitArray
    1. function ml.BitArray.and (arr1, arr2)
    2. function ml.BitArray.count (arr)
    3. function ml.BitArray.getBit (arr, n)
    4. function ml.BitArray.not (arr)
    5. function ml.BitArray.or (arr1, arr2)
    6. function ml.BitArray.parseBinaryString (str)
    7. function ml.BitArray.parseHexString (str)
    8. function ml.BitArray.setBit (arr, n, val)
    9. function ml.BitArray.toBinaryString (arr)
    10. function ml.BitArray.toDebug (arr)
    11. function ml.BitArray.toHexString (arr)
    12. function ml.BitArray.xor (arr1, arr2)
  4. module ml.Clust
    1. function ml.Clust.kmeans (data, K, options)
    2. object ml.Clust.hclust
  5. module ml.Clust.hclust
    1. function ml.Clust.hclust.agnes (data, options)
    2. function ml.Clust.hclust.diana (data, options)
  6. module ml.Math
    1. function ml.Math.DistanceMatrix (data, distanceFn)
    2. function ml.Math.Kernel (type, options)
    3. function ml.Math.Matrix (Array)
    4. function ml.Math.SG (data, h, options)
    5. function ml.Math.SGG (data, h, options)
    6. function ml.Math.SparseMatrix (rows, columns, options = {})
    7. object ml.Math.BellOptimizer
    8. object ml.Math.CurveFitting
    9. object ml.Math.Distance
    10. object ml.Math.Similarity
  7. module ml.Math.BellOptimizer
    1. function ml.Math.BellOptimizer.optimizeGaussianSum (xy, group, opts)
    2. function ml.Math.BellOptimizer.optimizeGaussianTrain (xy, group, opts)
    3. function ml.Math.BellOptimizer.optimizeLorentzianSum (xy, group, opts)
    4. function ml.Math.BellOptimizer.optimizeLorentzianTrain (xy, group, opts)
    5. function ml.Math.BellOptimizer.optimizeSingleGaussian (xy, peak, opts)
    6. function ml.Math.BellOptimizer.optimizeSingleLorentzian (xy, peak, opts)
    7. function ml.Math.BellOptimizer.singleGaussian (t, p, c)
    8. function ml.Math.BellOptimizer.singleLorentzian (t, p, c)
  8. module ml.Math.CurveFitting
    1. function ml.Math.CurveFitting.Matrix (Array)
    2. function ml.Math.CurveFitting.lm_Broyden_J (p_old, y_old, J, p, y)
    3. function ml.Math.CurveFitting.lm_FD_J (func, t, p, y, dp, c)
    4. function ml.Math.CurveFitting.lm_matx (func, t, p_old, y_old, dX2, J, p, y_dat, weight_sq, dp, c, iteration)
    5. function ml.Math.CurveFitting.optimize (func, p, t, y_dat, weight, dp, p_min, p_max, c, opts)
  9. module ml.Math.Distance
    1. function ml.Math.Distance.additiveSymmetric (a, b)
    2. function ml.Math.Distance.avg (a, b)
    3. function ml.Math.Distance.bhattacharyya (a, b)
    4. function ml.Math.Distance.canberra (a, b)
    5. function ml.Math.Distance.chebyshev (a, b)
    6. function ml.Math.Distance.clark (a, b)
    7. function ml.Math.Distance.czekanowski (a, b)
    8. function ml.Math.Distance.dice (a, b)
    9. function ml.Math.Distance.divergence (a, b)
    10. function ml.Math.Distance.euclidean (p, q)
    11. function ml.Math.Distance.fidelity (a, b)
    12. function ml.Math.Distance.gower (a, b)
    13. function ml.Math.Distance.harmonicMean (a, b)
    14. function ml.Math.Distance.hellinger (a, b)
    15. function ml.Math.Distance.innerProduct (a, b)
    16. function ml.Math.Distance.intersection (a, b)
    17. function ml.Math.Distance.jaccard (a, b)
    18. function ml.Math.Distance.jeffreys (a, b)
    19. function ml.Math.Distance.jensenDifference (a, b)
    20. function ml.Math.Distance.jensenShannon (a, b)
    21. function ml.Math.Distance.kdivergence (a, b)
    22. function ml.Math.Distance.kulczynski (a, b)
    23. function ml.Math.Distance.kullbackLeibler (a, b)
    24. function ml.Math.Distance.kumarHassebrook (a, b)
    25. function ml.Math.Distance.kumarJohnson (a, b)
    26. function ml.Math.Distance.lorentzian (a, b)
    27. function ml.Math.Distance.manhattan (a, b)
    28. function ml.Math.Distance.matusita (a, b)
    29. function ml.Math.Distance.minkowski (a, b, p)
    30. function ml.Math.Distance.motyka (a, b)
    31. function ml.Math.Distance.neyman (a, b)
    32. function ml.Math.Distance.pearson (a, b)
    33. function ml.Math.Distance.probabilisticSymmetric (a, b)
    34. function ml.Math.Distance.ruzicka (a, b)
    35. function ml.Math.Distance.soergel (a, b)
    36. function ml.Math.Distance.sorensen (a, b)
    37. function ml.Math.Distance.squared (a, b)
    38. function ml.Math.Distance.squaredChord (a, b)
    39. function ml.Math.Distance.squaredEuclidean (p, q)
    40. function ml.Math.Distance.taneja (a, b)
    41. function ml.Math.Distance.tanimoto (a, b, bitvector)
    42. function ml.Math.Distance.topsoe (a, b)
    43. function ml.Math.Distance.waveHedges (a, b)
    44. object ml.Math.Distance.tree
  10. module ml.Math.Similarity
    1. function ml.Math.Similarity.cosine (a, b)
    2. function ml.Math.Similarity.czekanowski (a, b)
    3. function ml.Math.Similarity.dice (a, b)
    4. function ml.Math.Similarity.intersection (a, b)
    5. function ml.Math.Similarity.jaccard (a, b)
    6. function ml.Math.Similarity.kulczynski (a, b)
    7. function ml.Math.Similarity.motyka (a, b)
    8. function ml.Math.Similarity.pearson (a, b)
    9. function ml.Math.Similarity.squaredChord (a, b)
    10. function ml.Math.Similarity.tanimoto (a, b, bitvector)
  11. module ml.Math.SparseMatrix
    1. function ml.Math.SparseMatrix (rows, columns, options = {})
    2. function ml.Math.SparseMatrix.abs (matrix)
    3. function ml.Math.SparseMatrix.acos (matrix)
    4. function ml.Math.SparseMatrix.acosh (matrix)
    5. function ml.Math.SparseMatrix.add (matrix, value)
    6. function ml.Math.SparseMatrix.and (matrix, value)
    7. function ml.Math.SparseMatrix.asin (matrix)
    8. function ml.Math.SparseMatrix.asinh (matrix)
    9. function ml.Math.SparseMatrix.atan (matrix)
    10. function ml.Math.SparseMatrix.atanh (matrix)
    11. function ml.Math.SparseMatrix.cbrt (matrix)
    12. function ml.Math.SparseMatrix.ceil (matrix)
    13. function ml.Math.SparseMatrix.clz32 (matrix)
    14. function ml.Math.SparseMatrix.cos (matrix)
    15. function ml.Math.SparseMatrix.cosh (matrix)
    16. function ml.Math.SparseMatrix.div (matrix, value)
    17. function ml.Math.SparseMatrix.divide (matrix, value)
    18. function ml.Math.SparseMatrix.exp (matrix)
    19. function ml.Math.SparseMatrix.expm1 (matrix)
    20. function ml.Math.SparseMatrix.floor (matrix)
    21. function ml.Math.SparseMatrix.fround (matrix)
    22. function ml.Math.SparseMatrix.identity (rows = 1, columns = rows)
    23. function ml.Math.SparseMatrix.leftShift (matrix, value)
    24. function ml.Math.SparseMatrix.log (matrix)
    25. function ml.Math.SparseMatrix.log10 (matrix)
    26. function ml.Math.SparseMatrix.log1p (matrix)
    27. function ml.Math.SparseMatrix.log2 (matrix)
    28. function ml.Math.SparseMatrix.mod (matrix, value)
    29. function ml.Math.SparseMatrix.modulus (matrix, value)
    30. function ml.Math.SparseMatrix.mul (matrix, value)
    31. function ml.Math.SparseMatrix.multiply (matrix, value)
    32. function ml.Math.SparseMatrix.not (matrix)
    33. function ml.Math.SparseMatrix.or (matrix, value)
    34. function ml.Math.SparseMatrix.rightShift (matrix, value)
    35. function ml.Math.SparseMatrix.round (matrix)
    36. function ml.Math.SparseMatrix.sign (matrix)
    37. function ml.Math.SparseMatrix.signPropagatingRightShift (matrix, value)
    38. function ml.Math.SparseMatrix.sin (matrix)
    39. function ml.Math.SparseMatrix.sinh (matrix)
    40. function ml.Math.SparseMatrix.sqrt (matrix)
    41. function ml.Math.SparseMatrix.sub (matrix, value)
    42. function ml.Math.SparseMatrix.subtract (matrix, value)
    43. function ml.Math.SparseMatrix.tan (matrix)
    44. function ml.Math.SparseMatrix.tanh (matrix)
    45. function ml.Math.SparseMatrix.trunc (matrix)
    46. function ml.Math.SparseMatrix.xor (matrix, value)
    47. function ml.Math.SparseMatrix.zeroFillRightShift (matrix, value)
  12. module ml.Math.SparseMatrix.prototype
    1. function ml.Math.SparseMatrix.prototype.abs ()
    2. function ml.Math.SparseMatrix.prototype.acos ()
    3. function ml.Math.SparseMatrix.prototype.acosh ()
    4. function ml.Math.SparseMatrix.prototype.add (value)
    5. function ml.Math.SparseMatrix.prototype.addM (matrix)
    6. function ml.Math.SparseMatrix.prototype.addS (value)
    7. function ml.Math.SparseMatrix.prototype.and (value)
    8. function ml.Math.SparseMatrix.prototype.andM (matrix)
    9. function ml.Math.SparseMatrix.prototype.andS (value)
    10. function ml.Math.SparseMatrix.prototype.asin ()
    11. function ml.Math.SparseMatrix.prototype.asinh ()
    12. function ml.Math.SparseMatrix.prototype.atan ()
    13. function ml.Math.SparseMatrix.prototype.atanh ()
    14. function ml.Math.SparseMatrix.prototype.cbrt ()
    15. function ml.Math.SparseMatrix.prototype.ceil ()
    16. function ml.Math.SparseMatrix.prototype.clz32 ()
    17. function ml.Math.SparseMatrix.prototype.cos ()
    18. function ml.Math.SparseMatrix.prototype.cosh ()
    19. function ml.Math.SparseMatrix.prototype.div (value)
    20. function ml.Math.SparseMatrix.prototype.divM (matrix)
    21. function ml.Math.SparseMatrix.prototype.divS (value)
    22. function ml.Math.SparseMatrix.prototype.divide (value)
    23. function ml.Math.SparseMatrix.prototype.divideM (matrix)
    24. function ml.Math.SparseMatrix.prototype.divideS (value)
    25. function ml.Math.SparseMatrix.prototype.exp ()
    26. function ml.Math.SparseMatrix.prototype.expm1 ()
    27. function ml.Math.SparseMatrix.prototype.floor ()
    28. function ml.Math.SparseMatrix.prototype.fround ()
    29. function ml.Math.SparseMatrix.prototype.leftShift (value)
    30. function ml.Math.SparseMatrix.prototype.leftShiftM (matrix)
    31. function ml.Math.SparseMatrix.prototype.leftShiftS (value)
    32. function ml.Math.SparseMatrix.prototype.log ()
    33. function ml.Math.SparseMatrix.prototype.log10 ()
    34. function ml.Math.SparseMatrix.prototype.log1p ()
    35. function ml.Math.SparseMatrix.prototype.log2 ()
    36. function ml.Math.SparseMatrix.prototype.mod (value)
    37. function ml.Math.SparseMatrix.prototype.modM (matrix)
    38. function ml.Math.SparseMatrix.prototype.modS (value)
    39. function ml.Math.SparseMatrix.prototype.modulus (value)
    40. function ml.Math.SparseMatrix.prototype.modulusM (matrix)
    41. function ml.Math.SparseMatrix.prototype.modulusS (value)
    42. function ml.Math.SparseMatrix.prototype.mul (value)
    43. function ml.Math.SparseMatrix.prototype.mulM (matrix)
    44. function ml.Math.SparseMatrix.prototype.mulS (value)
    45. function ml.Math.SparseMatrix.prototype.multiply (value)
    46. function ml.Math.SparseMatrix.prototype.multiplyM (matrix)
    47. function ml.Math.SparseMatrix.prototype.multiplyS (value)
    48. function ml.Math.SparseMatrix.prototype.not ()
    49. function ml.Math.SparseMatrix.prototype.or (value)
    50. function ml.Math.SparseMatrix.prototype.orM (matrix)
    51. function ml.Math.SparseMatrix.prototype.orS (value)
    52. function ml.Math.SparseMatrix.prototype.rightShift (value)
    53. function ml.Math.SparseMatrix.prototype.rightShiftM (matrix)
    54. function ml.Math.SparseMatrix.prototype.rightShiftS (value)
    55. function ml.Math.SparseMatrix.prototype.round ()
    56. function ml.Math.SparseMatrix.prototype.sign ()
    57. function ml.Math.SparseMatrix.prototype.signPropagatingRightShift (value)
    58. function ml.Math.SparseMatrix.prototype.signPropagatingRightShiftM (matrix)
    59. function ml.Math.SparseMatrix.prototype.signPropagatingRightShiftS (value)
    60. function ml.Math.SparseMatrix.prototype.sin ()
    61. function ml.Math.SparseMatrix.prototype.sinh ()
    62. function ml.Math.SparseMatrix.prototype.sqrt ()
    63. function ml.Math.SparseMatrix.prototype.sub (value)
    64. function ml.Math.SparseMatrix.prototype.subM (matrix)
    65. function ml.Math.SparseMatrix.prototype.subS (value)
    66. function ml.Math.SparseMatrix.prototype.subtract (value)
    67. function ml.Math.SparseMatrix.prototype.subtractM (matrix)
    68. function ml.Math.SparseMatrix.prototype.subtractS (value)
    69. function ml.Math.SparseMatrix.prototype.tan ()
    70. function ml.Math.SparseMatrix.prototype.tanh ()
    71. function ml.Math.SparseMatrix.prototype.tensorProduct (other)
    72. function ml.Math.SparseMatrix.prototype.trunc ()
    73. function ml.Math.SparseMatrix.prototype.xor (value)
    74. function ml.Math.SparseMatrix.prototype.xorM (matrix)
    75. function ml.Math.SparseMatrix.prototype.xorS (value)
    76. function ml.Math.SparseMatrix.prototype.zeroFillRightShift (value)
    77. function ml.Math.SparseMatrix.prototype.zeroFillRightShiftM (matrix)
    78. function ml.Math.SparseMatrix.prototype.zeroFillRightShiftS (value)
    79. string ml.Math.SparseMatrix.prototype.klass
  13. module ml.Matrix
    1. function ml.Matrix (Array)
    2. function ml.Matrix.abstractMatrix (superCtor)
    3. function ml.Matrix.inv (matrix)
    4. function ml.Matrix.inverse (matrix)
    5. function ml.Matrix.solve (leftHandSide, rightHandSide)
    6. object ml.Matrix.DC
    7. object ml.Matrix.Decompositions
    8. object ml.Matrix.algebra
  14. module ml.Matrix.DC
    1. function ml.Matrix.DC.CHO (value)
    2. function ml.Matrix.DC.CholeskyDecomposition (value)
    3. function ml.Matrix.DC.EVD (matrix, options)
    4. function ml.Matrix.DC.EigenvalueDecomposition (matrix, options)
    5. function ml.Matrix.DC.LU (matrix)
    6. function ml.Matrix.DC.LuDecomposition (matrix)
    7. function ml.Matrix.DC.QR (value)
    8. function ml.Matrix.DC.QrDecomposition (value)
    9. function ml.Matrix.DC.SVD (value, options)
    10. function ml.Matrix.DC.SingularValueDecomposition (value, options)
    11. function ml.Matrix.DC.inverse (matrix)
    12. function ml.Matrix.DC.solve (leftHandSide, rightHandSide)
  15. module ml.Matrix.DC.CholeskyDecomposition.prototype
    1. function ml.Matrix.DC.CholeskyDecomposition.prototype.solve (value)
  16. module ml.Matrix.DC.LuDecomposition.prototype
    1. function ml.Matrix.DC.LuDecomposition.prototype.isSingular ()
    2. function ml.Matrix.DC.LuDecomposition.prototype.solve (value)
  17. module ml.Matrix.DC.QrDecomposition.prototype
    1. function ml.Matrix.DC.QrDecomposition.prototype.isFullRank ()
    2. function ml.Matrix.DC.QrDecomposition.prototype.solve (value)
  18. module ml.Matrix.DC.SingularValueDecomposition.prototype
    1. function ml.Matrix.DC.SingularValueDecomposition.prototype.inverse ()
    2. function ml.Matrix.DC.SingularValueDecomposition.prototype.solve (value)
    3. function ml.Matrix.DC.SingularValueDecomposition.prototype.solveForDiagonal (value)
  19. module ml.Matrix.algebra
    1. function ml.Matrix.algebra.abs (A)
    2. function ml.Matrix.algebra.add (A, B)
    3. function ml.Matrix.algebra.diag (A)
    4. function ml.Matrix.algebra.dotDivide (A, B)
    5. function ml.Matrix.algebra.dotMultiply (A, B)
    6. function ml.Matrix.algebra.dotPow (A, b)
    7. function ml.Matrix.algebra.exp (A)
    8. function ml.Matrix.algebra.eye (rows, cols)
    9. function ml.Matrix.algebra.inv (A)
    10. function ml.Matrix.algebra.matrix (A, B)
    11. function ml.Matrix.algebra.max (A, B)
    12. function ml.Matrix.algebra.min (A, B)
    13. function ml.Matrix.algebra.multiply (A, B)
    14. function ml.Matrix.algebra.ones (rows, cols)
    15. function ml.Matrix.algebra.random (rows, cols)
    16. function ml.Matrix.algebra.solve (A, B)
    17. function ml.Matrix.algebra.sqrt (A)
    18. function ml.Matrix.algebra.subtract (A, B)
    19. function ml.Matrix.algebra.transpose (A)
    20. function ml.Matrix.algebra.zeros (rows, cols)
  20. module ml.Matrix.prototype
    1. function ml.Matrix.prototype.inv ()
    2. function ml.Matrix.prototype.inverse ()
    3. function ml.Matrix.prototype.solve (other)
  21. module ml.RNG
    1. function ml.RNG.XSadd ()
  22. module ml.Regression
    1. function ml.Regression.KRR (inputs, outputs, options)
    2. function ml.Regression.KernelRidgeRegression (inputs, outputs, options)
    3. function ml.Regression.PolinomialFitting2D (inputs, outputs, options)
    4. function ml.Regression.SLR (x, y, options)
    5. function ml.Regression.SimpleLinearRegression (x, y, options)
    6. function ml.Regression.TheilSenRegression (x, y, options)
    7. object ml.Regression.NLR
    8. object ml.Regression.NonLinearRegression
  23. module ml.Regression.NLR
    1. function ml.Regression.NLR.ExpRegression (x, y, options)
    2. function ml.Regression.NLR.PolynomialRegression (x, y, M, options)
    3. function ml.Regression.NLR.PotentialRegression (x, y, M, options)
    4. function ml.Regression.NLR.PowerRegression (x, y, options)
  24. module ml.SL
    1. function ml.SL.KNN (reload, model)
    2. function ml.SL.NaiveBayes (reload, model)
    3. function ml.SL.PLS (X, Y)
    4. function ml.SL.SVM (options)
    5. object ml.SL.CV
    6. object ml.SL.CrossValidation
  25. module ml.SL.CV
    1. function ml.SL.CV.kFold (Classifier, features, labels, classifierOptions, k)
    2. function ml.SL.CV.leaveOneOut (Classifier, features, labels, classifierOptions)
    3. function ml.SL.CV.leavePOut (Classifier, features, labels, classifierOptions, p)
  26. module ml.SL.KNN
    1. function ml.SL.KNN (reload, model)
    2. function ml.SL.KNN.load (model)
  27. module ml.SL.KNN.prototype
    1. function ml.SL.KNN.prototype.export ()
    2. function ml.SL.KNN.prototype.getSinglePrediction (currentCase)
    3. function ml.SL.KNN.prototype.predict (dataset)
    4. function ml.SL.KNN.prototype.train (trainingSet, trainingLabels, options)
  28. module ml.SL.NaiveBayes
    1. function ml.SL.NaiveBayes (reload, model)
    2. function ml.SL.NaiveBayes.load (model)
    3. function ml.SL.NaiveBayes.separateClasses (X, y)
  29. module ml.SL.NaiveBayes.prototype
    1. function ml.SL.NaiveBayes.prototype.export ()
    2. function ml.SL.NaiveBayes.prototype.predict (dataset)
    3. function ml.SL.NaiveBayes.prototype.train (trainingSet, trainingLabels)
  30. module ml.SL.PLS
    1. function ml.SL.PLS (X, Y)
    2. function ml.SL.PLS.OPLS (dataset, predictions, numberOSC)
    3. object ml.SL.PLS.Utils
  31. module ml.SL.PLS.OPLS.prototype
    1. function ml.SL.PLS.OPLS.prototype.correctDataset (dataset)
  32. module ml.SL.SVM
    1. function ml.SL.SVM (options)
    2. function ml.SL.SVM.load (model)
  33. module ml.SL.SVM.prototype
    1. function ml.SL.SVM.prototype._applyWhitening (features)
    2. function ml.SL.SVM.prototype._marginOnePrecomputed (index, kernel)
    3. function ml.SL.SVM.prototype.margin (features)
    4. function ml.SL.SVM.prototype.marginOne (features, noWhitening)
    5. function ml.SL.SVM.prototype.predict (features)
    6. function ml.SL.SVM.prototype.predictOne (p)
    7. function ml.SL.SVM.prototype.supportVectors ()
    8. function ml.SL.SVM.prototype.toJSON ()
    9. function ml.SL.SVM.prototype.train (features, labels)
  34. module ml.Stat
    1. function ml.Stat.PCA (dataset, options)
    2. function ml.Stat.Performance (values: truthy for same class, falsy for different class)
    3. object ml.Stat.array
    4. object ml.Stat.matrix
  35. module ml.Stat.array
    1. function ml.Stat.array.arithmeticMean (values)
    2. function ml.Stat.array.center (values, inPlace)
    3. function ml.Stat.array.contraHarmonicMean (values)
    4. function ml.Stat.array.covariance (vector1, vector2, unbiased)
    5. function ml.Stat.array.cumulativeSum (array)
    6. function ml.Stat.array.entropy (values, eps)
    7. function ml.Stat.array.geometricMean (values)
    8. function ml.Stat.array.grandMean (means, samples)
    9. function ml.Stat.array.harmonicMean (values)
    10. function ml.Stat.array.kurtosis (values, unbiased)
    11. function ml.Stat.array.logMean (values)
    12. function ml.Stat.array.max (values)
    13. function ml.Stat.array.mean (values)
    14. function ml.Stat.array.median (values, alreadySorted)
    15. function ml.Stat.array.min (values)
    16. function ml.Stat.array.minMax (values)
    17. function ml.Stat.array.mode (values)
    18. function ml.Stat.array.pooledStandardDeviation (samples, unbiased)
    19. function ml.Stat.array.pooledVariance (samples, unbiased)
    20. function ml.Stat.array.quartiles (values, alreadySorted)
    21. function ml.Stat.array.robustMeanAndStdev (y)
    22. function ml.Stat.array.skewness (values, unbiased)
    23. function ml.Stat.array.standardDeviation (values, unbiased)
    24. function ml.Stat.array.standardError (values)
    25. function ml.Stat.array.standardize (values, standardDev, inPlace)
    26. function ml.Stat.array.sum (values)
    27. function ml.Stat.array.truncatedMean (values, percent, alreadySorted)
    28. function ml.Stat.array.variance (values, unbiased)
    29. function ml.Stat.array.weightedMean (values, weights)
    30. function ml.Stat.array.weightedStandardDeviation (values, weights)
    31. function ml.Stat.array.weightedVariance (values, weights)
  36. module ml.Stat.matrix
    1. function ml.Stat.matrix.center (matrix, means, inPlace)
    2. function ml.Stat.matrix.correlation (matrix)
    3. function ml.Stat.matrix.covariance (matrix, dimension)
    4. function ml.Stat.matrix.entropy (matrix, eps)
    5. function ml.Stat.matrix.kurtosis (matrix, unbiased)
    6. function ml.Stat.matrix.max (matrix)
    7. function ml.Stat.matrix.mean (matrix, dimension)
    8. function ml.Stat.matrix.median (matrix)
    9. function ml.Stat.matrix.min (matrix)
    10. function ml.Stat.matrix.minMax (matrix)
    11. function ml.Stat.matrix.mode (matrix)
    12. function ml.Stat.matrix.product (matrix, dimension)
    13. function ml.Stat.matrix.scatter (matrix, divisor, dimension)
    14. function ml.Stat.matrix.skewness (matrix, unbiased)
    15. function ml.Stat.matrix.standardDeviation (matrix, means, unbiased)
    16. function ml.Stat.matrix.standardError (matrix)
    17. function ml.Stat.matrix.standardize (matrix, standardDeviations, inPlace)
    18. function ml.Stat.matrix.sum (matrix, dimension)
    19. function ml.Stat.matrix.variance (matrix, means, unbiased)
    20. function ml.Stat.matrix.weightedCovariance (matrix, weights, means, dimension)
    21. function ml.Stat.matrix.weightedMean (matrix, weights, dimension)
    22. function ml.Stat.matrix.weightedScatter (matrix, weights, means, factor, dimension)
    23. function ml.Stat.matrix.weightedVariance (matrix, weights)
    24. function ml.Stat.matrix.zScores (matrix, means, standardDeviations)
  37. module ml.nn
    1. function ml.nn.FNN (also known as epsilon)
    2. function ml.nn.SOM (x, y, options, reload)
  38. module ml.nn.SOM
    1. function ml.nn.SOM (x, y, options, reload)
    2. function ml.nn.SOM.load (model, distance)
  39. module ml.nn.SOM.prototype
    1. function ml.nn.SOM.prototype._adjust (trainingValue, neighbourhoodRadius)
    2. function ml.nn.SOM.prototype._findBestMatchingUnit (candidate)
    3. function ml.nn.SOM.prototype._initNodes ()
    4. function ml.nn.SOM.prototype._predict (element, computePosition)
    5. function ml.nn.SOM.prototype.export (includeDistance)
    6. function ml.nn.SOM.prototype.getConvertedNodes ()
    7. function ml.nn.SOM.prototype.getFit (dataset)
    8. function ml.nn.SOM.prototype.getQuantizationError ()
    9. function ml.nn.SOM.prototype.predict (data, computePosition)
    10. function ml.nn.SOM.prototype.setTraining (trainingSet)
    11. function ml.nn.SOM.prototype.train (trainingSet)
    12. function ml.nn.SOM.prototype.trainOne ()
  40. module ml.numSort
    1. function ml.numSort.asc (a, b)
    2. function ml.numSort.desc (a, b)

module ml

function ml.HashTable (options = {})

function ml.Math.SparseMatrix (rows, columns, options = {})

function ml.Matrix (Array)

function ml.PadArray (data, options)

function ml.SL.KNN (reload, model)

function ml.SL.NaiveBayes (reload, model)

function ml.SL.PLS (X, Y)

function ml.SL.SVM (options)

function ml.binarySearch (haystack, needle, comparator, low, high)

function ml.nn.SOM (x, y, options, reload)

module ml.AU

function ml.AU.SNV (data)

function ml.AU.applyDotProduct (firstVector, secondVector)

function ml.AU.coordArrayToCoordMatrix (array, dimensions)

function ml.AU.coordArrayToPoints (array, dimensions)

function ml.AU.coordMatrixToCoordArray (coordMatrix)

function ml.AU.coordMatrixToPoints (matrix)

function ml.AU.getEquallySpacedData (x, y, options)

function ml.AU.pointsToCoordArray (points)

function ml.AU.pointsToCoordMatrix (matrix)

function ml.AU.scale (input, options)

module ml.BitArray

function ml.BitArray.and (arr1, arr2)

function ml.BitArray.count (arr)

function ml.BitArray.getBit (arr, n)

function ml.BitArray.not (arr)

function ml.BitArray.or (arr1, arr2)

function ml.BitArray.parseBinaryString (str)

function ml.BitArray.parseHexString (str)

function ml.BitArray.setBit (arr, n, val)

function ml.BitArray.toBinaryString (arr)

function ml.BitArray.toDebug (arr)

function ml.BitArray.toHexString (arr)

function ml.BitArray.xor (arr1, arr2)

module ml.Clust

function ml.Clust.kmeans (data, K, options)

module ml.Clust.hclust

function ml.Clust.hclust.agnes (data, options)

function ml.Clust.hclust.diana (data, options)

module ml.Math

function ml.Math.DistanceMatrix (data, distanceFn)

function ml.Math.Kernel (type, options)

function ml.Math.Matrix (Array)

function ml.Math.SG (data, h, options)

function ml.Math.SGG (data, h, options)

function ml.Math.SparseMatrix (rows, columns, options = {})

module ml.Math.BellOptimizer

function ml.Math.BellOptimizer.optimizeGaussianSum (xy, group, opts)

function ml.Math.BellOptimizer.optimizeGaussianTrain (xy, group, opts)

function ml.Math.BellOptimizer.optimizeLorentzianSum (xy, group, opts)

function ml.Math.BellOptimizer.optimizeLorentzianTrain (xy, group, opts)

function ml.Math.BellOptimizer.optimizeSingleGaussian (xy, peak, opts)

function ml.Math.BellOptimizer.optimizeSingleLorentzian (xy, peak, opts)

function ml.Math.BellOptimizer.singleGaussian (t, p, c)

function ml.Math.BellOptimizer.singleLorentzian (t, p, c)

module ml.Math.CurveFitting

function ml.Math.CurveFitting.Matrix (Array)

function ml.Math.CurveFitting.lm_Broyden_J (p_old, y_old, J, p, y)

function ml.Math.CurveFitting.lm_FD_J (func, t, p, y, dp, c)

function ml.Math.CurveFitting.lm_matx (func, t, p_old, y_old, dX2, J, p, y_dat, weight_sq, dp, c, iteration)

function ml.Math.CurveFitting.optimize (func, p, t, y_dat, weight, dp, p_min, p_max, c, opts)

module ml.Math.Distance

function ml.Math.Distance.additiveSymmetric (a, b)

function ml.Math.Distance.avg (a, b)

function ml.Math.Distance.bhattacharyya (a, b)

function ml.Math.Distance.canberra (a, b)

function ml.Math.Distance.chebyshev (a, b)

function ml.Math.Distance.clark (a, b)

function ml.Math.Distance.czekanowski (a, b)

function ml.Math.Distance.dice (a, b)

function ml.Math.Distance.divergence (a, b)

function ml.Math.Distance.euclidean (p, q)

function ml.Math.Distance.fidelity (a, b)

function ml.Math.Distance.gower (a, b)

function ml.Math.Distance.harmonicMean (a, b)

function ml.Math.Distance.hellinger (a, b)

function ml.Math.Distance.innerProduct (a, b)

function ml.Math.Distance.intersection (a, b)

function ml.Math.Distance.jaccard (a, b)

function ml.Math.Distance.jeffreys (a, b)

function ml.Math.Distance.jensenDifference (a, b)

function ml.Math.Distance.jensenShannon (a, b)

function ml.Math.Distance.kdivergence (a, b)

function ml.Math.Distance.kulczynski (a, b)

function ml.Math.Distance.kullbackLeibler (a, b)

function ml.Math.Distance.kumarHassebrook (a, b)

function ml.Math.Distance.kumarJohnson (a, b)

function ml.Math.Distance.lorentzian (a, b)

function ml.Math.Distance.manhattan (a, b)

function ml.Math.Distance.matusita (a, b)

function ml.Math.Distance.minkowski (a, b, p)

function ml.Math.Distance.motyka (a, b)

function ml.Math.Distance.neyman (a, b)

function ml.Math.Distance.pearson (a, b)

function ml.Math.Distance.probabilisticSymmetric (a, b)

function ml.Math.Distance.ruzicka (a, b)

function ml.Math.Distance.soergel (a, b)

function ml.Math.Distance.sorensen (a, b)

function ml.Math.Distance.squared (a, b)

function ml.Math.Distance.squaredChord (a, b)

function ml.Math.Distance.squaredEuclidean (p, q)

function ml.Math.Distance.taneja (a, b)

function ml.Math.Distance.tanimoto (a, b, bitvector)

function ml.Math.Distance.topsoe (a, b)

function ml.Math.Distance.waveHedges (a, b)

module ml.Math.Similarity

function ml.Math.Similarity.cosine (a, b)

function ml.Math.Similarity.czekanowski (a, b)

function ml.Math.Similarity.dice (a, b)

function ml.Math.Similarity.intersection (a, b)

function ml.Math.Similarity.jaccard (a, b)

function ml.Math.Similarity.kulczynski (a, b)

function ml.Math.Similarity.motyka (a, b)

function ml.Math.Similarity.pearson (a, b)

function ml.Math.Similarity.squaredChord (a, b)

function ml.Math.Similarity.tanimoto (a, b, bitvector)

module ml.Math.SparseMatrix

function ml.Math.SparseMatrix (rows, columns, options = {})

function ml.Math.SparseMatrix.abs (matrix)

function ml.Math.SparseMatrix.acos (matrix)

function ml.Math.SparseMatrix.acosh (matrix)

function ml.Math.SparseMatrix.add (matrix, value)

function ml.Math.SparseMatrix.and (matrix, value)

function ml.Math.SparseMatrix.asin (matrix)

function ml.Math.SparseMatrix.asinh (matrix)

function ml.Math.SparseMatrix.atan (matrix)

function ml.Math.SparseMatrix.atanh (matrix)

function ml.Math.SparseMatrix.cbrt (matrix)

function ml.Math.SparseMatrix.ceil (matrix)

function ml.Math.SparseMatrix.clz32 (matrix)

function ml.Math.SparseMatrix.cos (matrix)

function ml.Math.SparseMatrix.cosh (matrix)

function ml.Math.SparseMatrix.div (matrix, value)

function ml.Math.SparseMatrix.divide (matrix, value)

function ml.Math.SparseMatrix.exp (matrix)

function ml.Math.SparseMatrix.expm1 (matrix)

function ml.Math.SparseMatrix.floor (matrix)

function ml.Math.SparseMatrix.fround (matrix)

function ml.Math.SparseMatrix.identity (rows = 1, columns = rows)

function ml.Math.SparseMatrix.leftShift (matrix, value)

function ml.Math.SparseMatrix.log (matrix)

function ml.Math.SparseMatrix.log10 (matrix)

function ml.Math.SparseMatrix.log1p (matrix)

function ml.Math.SparseMatrix.log2 (matrix)

function ml.Math.SparseMatrix.mod (matrix, value)

function ml.Math.SparseMatrix.modulus (matrix, value)

function ml.Math.SparseMatrix.mul (matrix, value)

function ml.Math.SparseMatrix.multiply (matrix, value)

function ml.Math.SparseMatrix.not (matrix)

function ml.Math.SparseMatrix.or (matrix, value)

function ml.Math.SparseMatrix.rightShift (matrix, value)

function ml.Math.SparseMatrix.round (matrix)

function ml.Math.SparseMatrix.sign (matrix)

function ml.Math.SparseMatrix.signPropagatingRightShift (matrix, value)

function ml.Math.SparseMatrix.sin (matrix)

function ml.Math.SparseMatrix.sinh (matrix)

function ml.Math.SparseMatrix.sqrt (matrix)

function ml.Math.SparseMatrix.sub (matrix, value)

function ml.Math.SparseMatrix.subtract (matrix, value)

function ml.Math.SparseMatrix.tan (matrix)

function ml.Math.SparseMatrix.tanh (matrix)

function ml.Math.SparseMatrix.trunc (matrix)

function ml.Math.SparseMatrix.xor (matrix, value)

function ml.Math.SparseMatrix.zeroFillRightShift (matrix, value)

module ml.Math.SparseMatrix.prototype

function ml.Math.SparseMatrix.prototype.abs ()

function ml.Math.SparseMatrix.prototype.acos ()

function ml.Math.SparseMatrix.prototype.acosh ()

function ml.Math.SparseMatrix.prototype.add (value)

function ml.Math.SparseMatrix.prototype.addM (matrix)

function ml.Math.SparseMatrix.prototype.addS (value)

function ml.Math.SparseMatrix.prototype.and (value)

function ml.Math.SparseMatrix.prototype.andM (matrix)

function ml.Math.SparseMatrix.prototype.andS (value)

function ml.Math.SparseMatrix.prototype.asin ()

function ml.Math.SparseMatrix.prototype.asinh ()

function ml.Math.SparseMatrix.prototype.atan ()

function ml.Math.SparseMatrix.prototype.atanh ()

function ml.Math.SparseMatrix.prototype.cbrt ()

function ml.Math.SparseMatrix.prototype.ceil ()

function ml.Math.SparseMatrix.prototype.clz32 ()

function ml.Math.SparseMatrix.prototype.cos ()

function ml.Math.SparseMatrix.prototype.cosh ()

function ml.Math.SparseMatrix.prototype.div (value)

function ml.Math.SparseMatrix.prototype.divM (matrix)

function ml.Math.SparseMatrix.prototype.divS (value)

function ml.Math.SparseMatrix.prototype.divide (value)

function ml.Math.SparseMatrix.prototype.divideM (matrix)

function ml.Math.SparseMatrix.prototype.divideS (value)

function ml.Math.SparseMatrix.prototype.exp ()

function ml.Math.SparseMatrix.prototype.expm1 ()

function ml.Math.SparseMatrix.prototype.floor ()

function ml.Math.SparseMatrix.prototype.fround ()

function ml.Math.SparseMatrix.prototype.leftShift (value)

function ml.Math.SparseMatrix.prototype.leftShiftM (matrix)

function ml.Math.SparseMatrix.prototype.leftShiftS (value)

function ml.Math.SparseMatrix.prototype.log ()

function ml.Math.SparseMatrix.prototype.log10 ()

function ml.Math.SparseMatrix.prototype.log1p ()

function ml.Math.SparseMatrix.prototype.log2 ()

function ml.Math.SparseMatrix.prototype.mod (value)

function ml.Math.SparseMatrix.prototype.modM (matrix)

function ml.Math.SparseMatrix.prototype.modS (value)

function ml.Math.SparseMatrix.prototype.modulus (value)

function ml.Math.SparseMatrix.prototype.modulusM (matrix)

function ml.Math.SparseMatrix.prototype.modulusS (value)

function ml.Math.SparseMatrix.prototype.mul (value)

function ml.Math.SparseMatrix.prototype.mulM (matrix)

function ml.Math.SparseMatrix.prototype.mulS (value)

function ml.Math.SparseMatrix.prototype.multiply (value)

function ml.Math.SparseMatrix.prototype.multiplyM (matrix)

function ml.Math.SparseMatrix.prototype.multiplyS (value)

function ml.Math.SparseMatrix.prototype.not ()

function ml.Math.SparseMatrix.prototype.or (value)

function ml.Math.SparseMatrix.prototype.orM (matrix)

function ml.Math.SparseMatrix.prototype.orS (value)

function ml.Math.SparseMatrix.prototype.rightShift (value)

function ml.Math.SparseMatrix.prototype.rightShiftM (matrix)

function ml.Math.SparseMatrix.prototype.rightShiftS (value)

function ml.Math.SparseMatrix.prototype.round ()

function ml.Math.SparseMatrix.prototype.sign ()

function ml.Math.SparseMatrix.prototype.signPropagatingRightShift (value)

function ml.Math.SparseMatrix.prototype.signPropagatingRightShiftM (matrix)

function ml.Math.SparseMatrix.prototype.signPropagatingRightShiftS (value)

function ml.Math.SparseMatrix.prototype.sin ()

function ml.Math.SparseMatrix.prototype.sinh ()

function ml.Math.SparseMatrix.prototype.sqrt ()

function ml.Math.SparseMatrix.prototype.sub (value)

function ml.Math.SparseMatrix.prototype.subM (matrix)

function ml.Math.SparseMatrix.prototype.subS (value)

function ml.Math.SparseMatrix.prototype.subtract (value)

function ml.Math.SparseMatrix.prototype.subtractM (matrix)

function ml.Math.SparseMatrix.prototype.subtractS (value)

function ml.Math.SparseMatrix.prototype.tan ()

function ml.Math.SparseMatrix.prototype.tanh ()

function ml.Math.SparseMatrix.prototype.tensorProduct (other)

function ml.Math.SparseMatrix.prototype.trunc ()

function ml.Math.SparseMatrix.prototype.xor (value)

function ml.Math.SparseMatrix.prototype.xorM (matrix)

function ml.Math.SparseMatrix.prototype.xorS (value)

function ml.Math.SparseMatrix.prototype.zeroFillRightShift (value)

function ml.Math.SparseMatrix.prototype.zeroFillRightShiftM (matrix)

function ml.Math.SparseMatrix.prototype.zeroFillRightShiftS (value)

module ml.Matrix

function ml.Matrix (Array)

function ml.Matrix.abstractMatrix (superCtor)

function ml.Matrix.inv (matrix)

function ml.Matrix.inverse (matrix)

function ml.Matrix.solve (leftHandSide, rightHandSide)

module ml.Matrix.DC

function ml.Matrix.DC.CHO (value)

function ml.Matrix.DC.CholeskyDecomposition (value)

function ml.Matrix.DC.EVD (matrix, options)

function ml.Matrix.DC.EigenvalueDecomposition (matrix, options)

function ml.Matrix.DC.LU (matrix)

function ml.Matrix.DC.LuDecomposition (matrix)

function ml.Matrix.DC.QR (value)

function ml.Matrix.DC.QrDecomposition (value)

function ml.Matrix.DC.SVD (value, options)

function ml.Matrix.DC.SingularValueDecomposition (value, options)

function ml.Matrix.DC.inverse (matrix)

function ml.Matrix.DC.solve (leftHandSide, rightHandSide)

module ml.Matrix.DC.CholeskyDecomposition.prototype

function ml.Matrix.DC.CholeskyDecomposition.prototype.solve (value)

module ml.Matrix.DC.LuDecomposition.prototype

function ml.Matrix.DC.LuDecomposition.prototype.isSingular ()

function ml.Matrix.DC.LuDecomposition.prototype.solve (value)

module ml.Matrix.DC.QrDecomposition.prototype

function ml.Matrix.DC.QrDecomposition.prototype.isFullRank ()

function ml.Matrix.DC.QrDecomposition.prototype.solve (value)

module ml.Matrix.DC.SingularValueDecomposition.prototype

function ml.Matrix.DC.SingularValueDecomposition.prototype.inverse ()

function ml.Matrix.DC.SingularValueDecomposition.prototype.solve (value)

function ml.Matrix.DC.SingularValueDecomposition.prototype.solveForDiagonal (value)

module ml.Matrix.algebra

function ml.Matrix.algebra.abs (A)

function ml.Matrix.algebra.add (A, B)

function ml.Matrix.algebra.diag (A)

function ml.Matrix.algebra.dotDivide (A, B)

function ml.Matrix.algebra.dotMultiply (A, B)

function ml.Matrix.algebra.dotPow (A, b)

function ml.Matrix.algebra.exp (A)

function ml.Matrix.algebra.eye (rows, cols)

function ml.Matrix.algebra.inv (A)

function ml.Matrix.algebra.matrix (A, B)

function ml.Matrix.algebra.max (A, B)

function ml.Matrix.algebra.min (A, B)

function ml.Matrix.algebra.multiply (A, B)

function ml.Matrix.algebra.ones (rows, cols)

function ml.Matrix.algebra.random (rows, cols)

function ml.Matrix.algebra.solve (A, B)

function ml.Matrix.algebra.sqrt (A)

function ml.Matrix.algebra.subtract (A, B)

function ml.Matrix.algebra.transpose (A)

function ml.Matrix.algebra.zeros (rows, cols)

module ml.Matrix.prototype

function ml.Matrix.prototype.inv ()

function ml.Matrix.prototype.inverse ()

function ml.Matrix.prototype.solve (other)

module ml.RNG

function ml.RNG.XSadd ()

module ml.Regression

function ml.Regression.KRR (inputs, outputs, options)

function ml.Regression.KernelRidgeRegression (inputs, outputs, options)

function ml.Regression.PolinomialFitting2D (inputs, outputs, options)

function ml.Regression.SLR (x, y, options)

function ml.Regression.SimpleLinearRegression (x, y, options)

function ml.Regression.TheilSenRegression (x, y, options)

module ml.Regression.NLR

function ml.Regression.NLR.ExpRegression (x, y, options)

function ml.Regression.NLR.PolynomialRegression (x, y, M, options)

function ml.Regression.NLR.PotentialRegression (x, y, M, options)

function ml.Regression.NLR.PowerRegression (x, y, options)

module ml.SL

function ml.SL.KNN (reload, model)

function ml.SL.NaiveBayes (reload, model)

function ml.SL.PLS (X, Y)

function ml.SL.SVM (options)

module ml.SL.CV

function ml.SL.CV.kFold (Classifier, features, labels, classifierOptions, k)

function ml.SL.CV.leaveOneOut (Classifier, features, labels, classifierOptions)

function ml.SL.CV.leavePOut (Classifier, features, labels, classifierOptions, p)

module ml.SL.KNN

function ml.SL.KNN (reload, model)

function ml.SL.KNN.load (model)

module ml.SL.KNN.prototype

function ml.SL.KNN.prototype.export ()

function ml.SL.KNN.prototype.getSinglePrediction (currentCase)

function ml.SL.KNN.prototype.predict (dataset)

function ml.SL.KNN.prototype.train (trainingSet, trainingLabels, options)

module ml.SL.NaiveBayes

function ml.SL.NaiveBayes (reload, model)

function ml.SL.NaiveBayes.load (model)

function ml.SL.NaiveBayes.separateClasses (X, y)

module ml.SL.NaiveBayes.prototype

function ml.SL.NaiveBayes.prototype.export ()

function ml.SL.NaiveBayes.prototype.predict (dataset)

function ml.SL.NaiveBayes.prototype.train (trainingSet, trainingLabels)

module ml.SL.PLS

function ml.SL.PLS (X, Y)

function ml.SL.PLS.OPLS (dataset, predictions, numberOSC)

module ml.SL.PLS.OPLS.prototype

function ml.SL.PLS.OPLS.prototype.correctDataset (dataset)

module ml.SL.SVM

function ml.SL.SVM (options)

function ml.SL.SVM.load (model)

module ml.SL.SVM.prototype

function ml.SL.SVM.prototype._applyWhitening (features)

function ml.SL.SVM.prototype._marginOnePrecomputed (index, kernel)

function ml.SL.SVM.prototype.margin (features)

function ml.SL.SVM.prototype.marginOne (features, noWhitening)

function ml.SL.SVM.prototype.predict (features)

function ml.SL.SVM.prototype.predictOne (p)

function ml.SL.SVM.prototype.supportVectors ()

function ml.SL.SVM.prototype.toJSON ()

function ml.SL.SVM.prototype.train (features, labels)

module ml.Stat

function ml.Stat.PCA (dataset, options)

function ml.Stat.Performance (values: truthy for same class, falsy for different class)

module ml.Stat.array

function ml.Stat.array.arithmeticMean (values)

function ml.Stat.array.center (values, inPlace)

function ml.Stat.array.contraHarmonicMean (values)

function ml.Stat.array.covariance (vector1, vector2, unbiased)

function ml.Stat.array.cumulativeSum (array)

function ml.Stat.array.entropy (values, eps)

function ml.Stat.array.geometricMean (values)

function ml.Stat.array.grandMean (means, samples)

function ml.Stat.array.harmonicMean (values)

function ml.Stat.array.kurtosis (values, unbiased)

function ml.Stat.array.logMean (values)

function ml.Stat.array.max (values)

function ml.Stat.array.mean (values)

function ml.Stat.array.median (values, alreadySorted)

function ml.Stat.array.min (values)

function ml.Stat.array.minMax (values)

function ml.Stat.array.mode (values)

function ml.Stat.array.pooledStandardDeviation (samples, unbiased)

function ml.Stat.array.pooledVariance (samples, unbiased)

function ml.Stat.array.quartiles (values, alreadySorted)

function ml.Stat.array.robustMeanAndStdev (y)

function ml.Stat.array.skewness (values, unbiased)

function ml.Stat.array.standardDeviation (values, unbiased)

function ml.Stat.array.standardError (values)

function ml.Stat.array.standardize (values, standardDev, inPlace)

function ml.Stat.array.sum (values)

function ml.Stat.array.truncatedMean (values, percent, alreadySorted)

function ml.Stat.array.variance (values, unbiased)

function ml.Stat.array.weightedMean (values, weights)

function ml.Stat.array.weightedStandardDeviation (values, weights)

function ml.Stat.array.weightedVariance (values, weights)

module ml.Stat.matrix

function ml.Stat.matrix.center (matrix, means, inPlace)

function ml.Stat.matrix.correlation (matrix)

function ml.Stat.matrix.covariance (matrix, dimension)

function ml.Stat.matrix.entropy (matrix, eps)

function ml.Stat.matrix.kurtosis (matrix, unbiased)

function ml.Stat.matrix.max (matrix)

function ml.Stat.matrix.mean (matrix, dimension)

function ml.Stat.matrix.median (matrix)

function ml.Stat.matrix.min (matrix)

function ml.Stat.matrix.minMax (matrix)

function ml.Stat.matrix.mode (matrix)

function ml.Stat.matrix.product (matrix, dimension)

function ml.Stat.matrix.scatter (matrix, divisor, dimension)

function ml.Stat.matrix.skewness (matrix, unbiased)

function ml.Stat.matrix.standardDeviation (matrix, means, unbiased)

function ml.Stat.matrix.standardError (matrix)

function ml.Stat.matrix.standardize (matrix, standardDeviations, inPlace)

function ml.Stat.matrix.sum (matrix, dimension)

function ml.Stat.matrix.variance (matrix, means, unbiased)

function ml.Stat.matrix.weightedCovariance (matrix, weights, means, dimension)

function ml.Stat.matrix.weightedMean (matrix, weights, dimension)

function ml.Stat.matrix.weightedScatter (matrix, weights, means, factor, dimension)

function ml.Stat.matrix.weightedVariance (matrix, weights)

function ml.Stat.matrix.zScores (matrix, means, standardDeviations)

module ml.nn

function ml.nn.FNN (also known as epsilon)

function ml.nn.SOM (x, y, options, reload)

module ml.nn.SOM

function ml.nn.SOM (x, y, options, reload)

function ml.nn.SOM.load (model, distance)

module ml.nn.SOM.prototype

function ml.nn.SOM.prototype._adjust (trainingValue, neighbourhoodRadius)

function ml.nn.SOM.prototype._findBestMatchingUnit (candidate)

function ml.nn.SOM.prototype._initNodes ()

function ml.nn.SOM.prototype._predict (element, computePosition)

function ml.nn.SOM.prototype.export (includeDistance)

function ml.nn.SOM.prototype.getConvertedNodes ()

function ml.nn.SOM.prototype.getFit (dataset)

function ml.nn.SOM.prototype.getQuantizationError ()

function ml.nn.SOM.prototype.predict (data, computePosition)

function ml.nn.SOM.prototype.setTraining (trainingSet)

function ml.nn.SOM.prototype.train (trainingSet)

function ml.nn.SOM.prototype.trainOne ()

module ml.numSort

function ml.numSort.asc (a, b)

function ml.numSort.desc (a, b)

[ this document was created with utility2 ]